In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
The data set is based on the reflectance of MODIS channels and the observation data of SIF to establish the neural network model, so as to obtain the SIF data with high spatial and temporal resolution, which is often used as a reference for primary productivity. The data is from Zhang et al. (2018), and the specific algorithm is shown in the article. The source data range is global, and the Qinghai Tibet plateau region is selected in this data set. This data integrates the original 4-day time scale data into the monthly data. The processing method is to take the maximum value of the month, so as to achieve the effect of removing noise as much as possible. This data set is often used to evaluate the temporal and spatial patterns of vegetation greenness and primary productivity, which has practical significance and theoretical value.
ZHANG Yao
The data set is based on the reflectance of MODIS channels and the observation data of SIF to establish the neural network model, so as to obtain the SIF data with high spatial and temporal resolution, which is often used as a reference for primary productivity. The data is from Zhang et al. (2018), and the specific algorithm is shown in the article. The source data range is global, and the Tibetan plateau region is selected in this data set. This data integrates the original 4-day time scale data into the monthly data. The processing method is to take the maximum value of the month, so as to achieve the effect of removing noise as much as possible. This data set is often used to evaluate the temporal and spatial patterns of vegetation greenness and primary productivity, which has practical significance and theoretical value.
ZHANG Yao
Lakes on the Tibetan Plateau (TP) are an indicator and sentinel of climatic changes. We extended lake area changes on the TP from 2010 to 2021, and provided a long and dense lake observations between the 1970s and 2021. We found that the number of lakes, with area larger than 1 k㎡ , has increased to ~1400 in 2021 from ~1000 in the 1970s. The total area of these lakes decreased between the 1970s and ~1995, and then showed a robust increase, with the exception of a slight decrease in 2015. This expansion of the lakes on the highest plateau in the world is a response to a hydrological cycle intensified by recent climate changes.
ZHANG Guoqing
This data set is the annual maximum value data (ndvi-am) of the normalized vegetation index of the Qinghai Tibet Plateau from 2000 to 2018. The data is in grid TIFF format, with a spatial resolution of 250m and a grid data value range of [- 1,1]. It can be used to study the change of vegetation coverage, grassland degradation and other ecological environment changes in the Qinghai Tibet Plateau, and can also provide data support for the study of urbanization and ecological environment interaction stress. The data is calculated based on the land level 2 standard data product of MODIS medium resolution sensor mod13 series (https://modis.gsfc.nasa.gov/data/dataprod/mod13.php). The level 2 Product data is a specific application data product generated after processing the original MODIS original data set. Ndvi-am data is processed by calculating the annual maximum value of NDVI of each pixel based on the normalized vegetation index data.
DU Yunyan, YI Jiawei
This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CAO Guangzhen
Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CHU Duo
The distribution of lakes in space and its change over time are closely related to agricultural, environmental and ecological issues, and are critical factors for human socio-economic development. In the past decades, satellite based remote sensing has been developed rapidly to provide essential data sources for monitoring temporal lakes dynamics with its advantage of rapidness, wide coverage, and lower cost. This dataset was produced from Landsat images using the automated water detection method (Feng et al, 2015). We collected 96,278 Landsat images (about 25 terabytes) that acquired since 2000 with less than 80% cloud contamination in the arid region of central Asia and Tibetan Plateau. Water is detected in each of the image and then aggregated to monthly temporal resolution by taking advantage of the high-performance processing capability and large data storage provided by Global Land Cover Facility (GLCF) at University of Maryland. The results are validated systematically and quantitatively using manually interpreted dataset, which consists of a set of locations collected by a stratified random sampling strategy to effectively represent different spatial-temporal distributions in the region. The validation suggests high accuracy of the results (overall accuracy: 99.45(±0.59); user accuracy: 85.37%±(3.74); produce accuracy: 98.17(±1.05)).
FENG Min, CHE Xianghong
The dataset is the land cover of Qing-Tibet Plateau in 2014. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
The dataset is the land cover of Qing-Tibet Plateau in 2010. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.
Food and Agriculture Organization of the United Nations(FAO)
This dataset includes the monthly air temperature at 2 m in the Qilian Mountain area on the Qinghai-Tibetan Plateau during 1980 to 2013. The dataset was obtained from the ERA-interim reanalysis product. The ERA-interim system includes a 4-dimensional variational analysis (4D-Var). The quality of the data has been improved using the bias correction of satellite data. The spatial resolution of the dataset is 0.125°. The dataset includes the grid data of the air temperature in the Qilian Mountain area during the past 30 years, and provides a basic data for the studies such as climatic change, ecosystem succession, and earth system models.
WU Xiaodong
The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau
FANG Huajun
The Qinghai Tibet Plateau belongs to the plateau mountain climate. The temperature and its seasonal variation have been one of the hot spots in the global climate change research. The data includes the temperature data of Qinghai Tibet Plateau, with spatial resolution of 1km * 1km, temporal resolution of month and year, and time coverage of 2000, 2005, 2010 and 2015. The data are obtained by Kring interpolation on the data of national weather station in Qinghai Tibet Plateau. The data can be used to analyze the temporal and spatial distribution of air temperature in the Qinghai Tibet Plateau. In addition, the data can also be used to analyze the law of temperature change with time in the Qinghai Tibet Plateau, which is of great significance to the study of the ecological environment of the Qinghai Tibet Plateau.
FANG Huajun
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn