This dataset is about the historical yield data (yield per unit area and sown area) of the main crops (hull-less barley and wheat) on Tibetan Plateau between years 1988-2018, covering some prefectures and cities located in Tibetan Plateau. The data are obtained from Tibet Statistical Yearbook, Qinghai Statistical Yearbook, Sichuan Statistical Yearbook, Gansu Statistical Yearbook, Yunnan Statistical Yearbook and the aba Tibetan and Qiang Autonomous Prefecture and Ganzi Tibetan Autonomous Prefecture Agriculture and Animal Husbandry Bureau with the same accuracy. Hull-less barley and wheat are the main crops on the Tibetan Plateau. This data set is of great value for the study of food security and agricultural production on Tibetan Plateau.
PAN Zhifen
The database is derived from the UAV image data obtained from the field survey conducted by the Qinghai Tibet Plateau farmland ecosystem research team in 2020. The survey area involves the farmland ecosystem concentration areas and counties along Sichuan and Tibet 318, including Litang and Batang in Sichuan, and the areas such as Basu, Linzhi, Gyangze and Bailang in Xigaze in Tibet. The recorded objects include highland barley Traditional crops such as wheat, as well as open field vegetables and greenhouse facilities in some areas; The flight altitude is generally 50-300m, with high resolution. The photographing equipment is Dajiang yu2pro. The picture comes with GIS longitude, latitude, altitude and other information, which can be used for ground reference or correction data of satellite remote sensing.
WU Xiaogang
The database contains the historical data of agricultural production, operation and management of the Qinghai Tibet Plateau, which is collected and sorted from the statistical yearbooks of cities and states in the Qinghai Tibet Plateau over the years, extracted and summarized after electronization; This data includes the data of farmland effective irrigation area in sub counties within the scope of Qinghai Tibet Plateau from 1995 to 2018. The effective irrigation area of farmland is an important indicator of production, operation and management. The Qinghai Tibet Plateau is dominated by typical dry farming. In most areas, agricultural irrigation is dominated by natural precipitation, and the area covered by artificial irrigation is less. This data is of great significance for analyzing the management of water resources utilization and water footprint of farmland ecosystem in the Qinghai Tibet Plateau. The data are collected by county, The results can reach the county scale.
HE Xiulin
This data set includes the social, economic, resource and other relevant index data of Gansu, Qinghai, Sichuan, Tibet, Xinjiang and Yunnan in the Qinghai Tibet Plateau from 2000 to 2015. The data are derived from Gansu statistical yearbook, Qinghai statistical yearbook, Sichuan statistical yearbook, Xizang statistical yearbook, Xinjiang statistical yearbook, Yunnan statistical Yearbook China county (city) socio economic statistical yearbook And China economic network, guotai'an, etc. The statistical scale is county-level unit scale, including 26 county-level units such as Yumen City, Aksai Kazak Autonomous Region and Subei Mongolian Autonomous County in Gansu Province, 41 county-level units such as Delingha City, Ulan county and Tianjun County in Qinghai Province, 46 counties such as Shiqu County, Ruoergai County and ABA County in Sichuan Province, and 78 counties such as Ritu County, Gaize county and bango County in Tibet, 14 counties including Wuqia County, aktao county and Shache County in Xinjiang Province, and 9 counties including Deqin County, Zhongdian county and Fugong County in Yunnan Province; Variables include County GDP, added value of primary industry, added value of secondary industry, added value of tertiary industry, total industrial output value of Industrial Enterprises above Designated Size, total retail sales of social consumer goods, balance of residents' savings deposits, grain output, total sown area of crops, number of students in ordinary middle schools and land area. The data set can be used to evaluate the social, economic and resource status of the Qinghai Tibet Plateau.
CHEN Yizhong
This dataset was captured during the field investigation of the Qinghai-Tibet Plateau in June 2021 using uav aerial photography. The data volume is 3.4 GB and includes more than 330 aerial photographs. The shooting locations mainly include roads, residential areas and their surrounding areas in Lhasa Nyingchi of Tibet, Dali and Nujiang of Yunnan province, Ganzi, Aba and Liangshan of Sichuan Province. These aerial photographs mainly reflect local land use/cover type, the distribution of facility agriculture land, vegetation coverage. Aerial photographs have spatial location information such as longitude, latitude and altitude, which can not only provide basic verification information for land use classification, but also provide reference for remote sensing image inversion of large-scale regional vegetation coverage by calculating vegetation coverage.
LV Changhe, ZHANG Zemin
As the roof of the world, the water tower of Asia and the third pole of the world, the Qinghai Tibet Plateau is an important ecological security barrier for China and even Asia. With the rapid development of social economy, human activities have increased significantly, and the impact on the ecological environment is growing. In this paper, eight factors including cultivated land, construction land, National Road, provincial road, railway, expressway, GDP and population density were selected as the threat factors, and the attributes of the threat factors were determined based on the expert scoring method to evaluate the habitat quality of the Qinghai Tibet Plateau, so as to obtain six data sets of the habitat quality of the agricultural and pastoral areas of the Qinghai Tibet Plateau in 1990, 1995, 2000, 2005, 2010 and 2015. The production of habitat quality data sets will help to explore the habitat quality of the Qinghai Tibet Plateau and provide effective support for the government to formulate sustainable development policies of the Qinghai Tibet Plateau.
LIU Shiliang, LIU Yixuan, SUN Yongxiu, LI Mingqi
The data set was obtained from UAV aerial photography during the field investigation of the Qinghai Tibet Plateau in August 2020. The data size is 10.1 GB, including more than 11600 aerial photos. The shooting sites mainly include Lhasa, Shannan, Shigatse and other areas along the road, residential areas and surrounding areas. The aerial photos mainly reflect the local land use / cover type, facility agriculture distribution, grassland coverage and other information. The aerial photos have longitude, latitude and altitude information, which can provide better verification information for land use / cover remote sensing interpretation, and can also be used for vegetation coverage estimation, and provide better reference information for land use research in the study area.
LV Changhe, LIU Yaqun
In order to explore how and when turnip was successfully domesticated the Qinghai-Tibet Plateau and what is the relationship between turnip domestication and early human settlement on the Qinghai-Tibetan Plateau and human migration along the ancient Silk Road, the whole genome De Novo sequencing of a self-bred F1 variety on Qinghai-Xizang Plateau was conducted, with the assembled genome size of 409.69 Mb,Contig N50 was 1.21 Mb in June 2018 using Pacbio sequencing. Those data will provide a genetic basis for elucidating the relationship between plant disperse and human activities. As we know, traditional turnip landrace is influenced by human domestication and nature selection. Hopefully, the study will help to understand the impacts of human selection on turnip genetic differentiation, and the adaptation mechanism of turnip in the Qinghai-Tibetan Plateau.
DUAN Yuanwen
This data set includes the biomass and photosynthesis observational data of the highland spring barley experimental plot at the Lhasa Farm Experimental Station and the meteorological data observationally obtained at the Damxung Grass Experimental Station. The time range is 2006-2009. Biomass observation method: The sampling area of each sample is 25 cm*25 cm. Photosynthetic data observation: The instrument is a LiCor-6400. The biomass data are manually entered according to the record book. The photosynthetic data are automatically recorded by the instrument. The average wind speed, prevailing wind direction, temperature, atmospheric pressure and relative humidity in the daily values of meteorological data are averaged over half-hour data. The precipitation and total radiation data are automatically recorded by the observation system. The observation process of biomass data is in strict accordance with the agronomic method, and it can be applied to the estimation of agricultural productivity. In the process of photosynthetic data observation, the operation of the instrument and the selection of the observation object are strictly in accordance with professional requirements and can be used in photosynthetic parameter simulations estimating plant leaf and productivity. The Tibetan Plateau farmland ecosystem observation data includes: 1) aboveground biomass; 2) CO2 response photosynthetic data; 3) light-response photosynthetic data; and 4) daily meteorological data in Damxung Monitoring Point. Data collection locations: Lhasa Agricultural Ecology Experimental Station, Chinese Academy of Sciences, Longitude: 91°20’, Latitude: 29°41’, Altitude: 3688 m and Damxung Alpine Meadow Carbon Flux Observation Station, Longitude: 91°05′, Latitude: 30°25′, Altitude: 4333 m.
ZHANG Xianzhou
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn