This data set includes the social, economic, resource and other relevant index data of Gansu, Qinghai, Sichuan, Tibet, Xinjiang and Yunnan in the Qinghai Tibet Plateau from 2000 to 2015. The data are derived from Gansu statistical yearbook, Qinghai statistical yearbook, Sichuan statistical yearbook, Xizang statistical yearbook, Xinjiang statistical yearbook, Yunnan statistical Yearbook China county (city) socio economic statistical yearbook And China economic network, guotai'an, etc. The statistical scale is county-level unit scale, including 26 county-level units such as Yumen City, Aksai Kazak Autonomous Region and Subei Mongolian Autonomous County in Gansu Province, 41 county-level units such as Delingha City, Ulan county and Tianjun County in Qinghai Province, 46 counties such as Shiqu County, Ruoergai County and ABA County in Sichuan Province, and 78 counties such as Ritu County, Gaize county and bango County in Tibet, 14 counties including Wuqia County, aktao county and Shache County in Xinjiang Province, and 9 counties including Deqin County, Zhongdian county and Fugong County in Yunnan Province; Variables include County GDP, added value of primary industry, added value of secondary industry, added value of tertiary industry, total industrial output value of Industrial Enterprises above Designated Size, total retail sales of social consumer goods, balance of residents' savings deposits, grain output, total sown area of crops, number of students in ordinary middle schools and land area. The data set can be used to evaluate the social, economic and resource status of the Qinghai Tibet Plateau.
CHEN Yizhong
As the roof of the world, the water tower of Asia and the third pole of the world, the Qinghai Tibet Plateau is an important ecological security barrier for China and even Asia. With the rapid development of social economy, human activities have increased significantly, and the impact on the ecological environment is growing. In this paper, eight factors including cultivated land, construction land, National Road, provincial road, railway, expressway, GDP and population density were selected as the threat factors, and the attributes of the threat factors were determined based on the expert scoring method to evaluate the habitat quality of the Qinghai Tibet Plateau, so as to obtain six data sets of the habitat quality of the agricultural and pastoral areas of the Qinghai Tibet Plateau in 1990, 1995, 2000, 2005, 2010 and 2015. The production of habitat quality data sets will help to explore the habitat quality of the Qinghai Tibet Plateau and provide effective support for the government to formulate sustainable development policies of the Qinghai Tibet Plateau.
LIU Shiliang, LIU Yixuan, SUN Yongxiu, LI Mingqi
The data set is the basic data of the Qinghai Tibet Plateau in 2015. The original data comes from the National Basic Geographic Information Center, and the data of the Qinghai Tibet plateau region is formed by splicing and clipping the segmented data. The data content includes 1:1 million provincial administrative divisions, 1:1 million roads and 1:250000 water system. The data attributes of administrative divisions include name, code and Pinyin; Road data attributes include: GB, RN, name, rteg and type (basic geographic information classification code, road code, road name, road grade and road type); Water system data attributes include: GB, hydc, name, period (basic geographic information classification code, water system name code, name, season).
YANG Yaping
This data set includes the urban distribution, urban population and built-up areas of the Qinghai Tibet Plateau from 2000 to 2015. The urban distribution data is the county-level vector boundary in 2015, and the urban population and built-up area data years are 2000, 2005, 2010 and 2015. Among them, the data of urban distribution and built-up areas are from the research team of Kuang Wenhui, Professor of Institute of geography and resources, Chinese Academy of Sciences, and the data of urban population are from the census data of each year, the statistical yearbook of each province in the Qinghai Tibet Plateau, etc. The data quality is excellent, which can be used to analyze the population growth trend, urban expansion and the impact of human activities on the surrounding environment of cities and towns in the Qinghai Tibet Plateau.
KUANG Wenhui
Taking villages and towns as the basic division unit, the division map of agricultural development in the Tibetan Plateau comprehensively considers climate, topography, vegetation type and coverage, land use type and proportion, distribution of nature reserves, key points of ecological protection and direction of agricultural development, puts forward the zoning scheme of agricultural and animal husbandry regulation for ecological protection in Qinghai Tibet Plateau, and divides the Qinghai Tibet Plateau into 8 areas (3 areas are based on ecological protection) The protection areas are the key limited control areas of agriculture and animal husbandry, 5 moderate development areas of agriculture and 23 small areas, and the zoning is named by the way of protection + development direction of agriculture and animal husbandry. The purpose of the zoning map is to develop agriculture and animal husbandry moderately on the basis of effective ecological protection, which can provide reference information for the protection of ecological security barrier function and sustainable management.
LV Changhe, LIU Yaqun
Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.
ZHAN Jinyan, TENG Yanmin, LIU Shiliang
The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.
FENG Xiaoming
The natural resources dataset of the Qinghai-Tibetan Plateau covers 215 counties in this area. The observation intervals are 5 years from 2000-2015. The indicators are rainfall, temperature, humidity, population, and land area. The data sources are meteorological station data, regional statistical yearbook, etc., which are expressed by Excel. This data provides a reference for understanding the natural background conditions on the county scale in the Qinghai Tibet Plateau.
FENG Xiaoming
Taking the villages or towns as the basic division unit, taking into account the forest topography (elevation, slope), vegetation type and coverage, land use status and agricultural utilization type, distribution of natural reserves, key points of ecological protection and agricultural development direction, the preliminary scheme of the agricultural and animal husbandry regulation and Control Division of the ecological protection on the Qinghai Tibet Plateau is proposed, which divides the Qinghai Tibet Plateau into 8 regions (3 regions With ecological protection as the key agricultural and animal husbandry limited control area, 5 agricultural moderate development areas) and 23 residential areas, the way of protection + agricultural and animal husbandry development direction is adopted in the naming of zones. Based on the effective protection of ecology and the moderate development of agriculture and animal husbandry in the Qinghai Tibet Plateau, the map can provide reference information for the protection of ecological security barrier function and sustainable management.
LV Changhe, LIU Yaqun
This data is originated from the 1:100,000 national basic geographic database, which was open freely for public by the National Basic Geographic Information Center in November 2017. The boundary of the Qinghai-Tibet Plateau was spliced and clipped as a whole, so as to facilitate the study on the Qinghai-Tibet plateau. This data set is the 1:100,000 administrative boundaries of the qinghai-tibet plateau, including National_Tibet_line、 Province_Tibet、City_Tibet、County_Tibet_poly and County_Tibet_line. Administrative boundary layer (County_Tibet_poly) property name and definition: Item Properties Describe Example PAC Administrative division code 513230 NAME The name of the County line name Administrative boundary layer (BOUL) attribute name and definition: Item Properties Describe Example GB classification code 630200 Administrative boundary layer (County_Tibet_line) attribute item meaning: Item Properties Describe Example GB 630200 Provincial boundary GB 640200 Prefectural, municipal and state administrative boundaries GB 650201 county administrative boundaries (determined)
National Basic Geographic Information Center
This dataset contains five types of boundaries. 1. TPBoundary_ 2500m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 2500m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 2. TPBoundary_ 3000m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 3000m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 3. TPBoundary_ HF (high_frequency): This boundary is defined according to 2 previous studies. Bingyuan Li (1987) had a systematic discussion on the principles for determining the extent of the Tibetan Plateau and the specific boundaries. From the perspective of the formation and basic characteristics of the Tibetan Plateau, he proposed the basic principles for determining the extent of the Tibetan Plateau based on the geomorphological features, the plateau surface and its altitude, while considering the integrity of the mountain. Yili Zhang (2002) determined the extent and boundaries of the Tibetan Plateau based on the new results of research in related fields and years of field practice. He combined information technology methods to precisely locate and quantitatively analyze the extent and boundary location of the Tibetan Plateau, and concluded that the Tibetan Plateau in China extends from the Pamir Plateau in the west to the Hengduan Mountains in the east, from the southern edge of the Himalayas in the south to the northern side of the Kunlun-Qilian Mountains in the north. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the Announcement on Adding Geographical Names for Public Use in the Southern Tibetan Region (First Batch), adding six geographical names in the southern Tibetan region, including Wo’gyainling, Mila Ri, Qoidêngarbo Ri, Mainquka, Bümo La, and Namkapub Ri. 4. TPBoundary_ New (2021): Along with the in-depth research on the Tibetan Plateau, the improvement of multidisciplinary research and understanding inside and outside the plateau, and the progress of geographic big data and Earth observation science and technology, the development of the 2021 version of the Tibetan Plateau boundary data by Yili Zhang and et al. was completed based on the comprehensive analysis of ASTER GDEM and Google Earth remote sensing images. The range boundary starts from the northern foot of the West Kunlun Mountain-Qilian Mountain Range in the north and reaches the southern foot of the Himalayas and other mountain ranges in the south, with a maximum width of 1,560 km from north to south; from the western edge of the Hindu Kush Mountains and the Pamir Plateau in the west to the eastern edge of the Hengduan Mountains and other mountain ranges in the east, with a maximum length of about 3,360 km from east to west; the latitude and longitude range is 25°59′30″N~40°1′0″N, 67°40′37″E~104°40′57″E, with a total area of 3,083,400km2 and an average altitude of about 4,320m. Administratively, the Tibetan Plateau is distributed in nine countries, including China, India, Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. 5. TPBoundary_ Rectangle: The rectangle was drawn according to the range of Lon (63~105E) and Lat (20~45N). The data are in latitude and longitude projection WGS84. As the basic data, the boundary of the Tibetan Plateau can be used as a reference basis for various geological data and scientific research on the Tibetan Plateau.
ZHANG Yili
The data set was produced based on the SRTM DEM data collected by Space Shuttle Radar terrain mission in 2016, the reference data such as river, lake and other water system auxiliary data , using the arcgis hydrological model to analyze and extract the river network. There are 12 sub-basins over the Tibet Plateau, including AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow. The outer boundary is based on the 2500-metre contour line and national boundaries.
ZHANG Guoqing
This dataset is the boundary vector data of county-level administrative units in Tibetan Plateau in 2015. The data is in Shapefile format and includes provincial administrative units such as Tibet Autonomous Region, Qinghai Province, Gansu Province, Yunnan Province, Xinjiang Uygur Autonomous Region, and Sichuan Province. The county-level administrative unit boundary within the plateau can be used for the geographical background research of the urbanization and ecological environment interaction stress of the Qinghai-Tibet Plateau. It is the basic geographic data for the statistics of the urbanization indicators of the county-level units of the Qinghai-Tibet Plateau. The data is obtained by means of data capture and collected through the administrative interface data acquisition API interface provided by the high-tech map. The data set uses the geographic coordinate system of WGS84.
DU Yunyan
This dataset is the boundary vector data of the prefecture-level administrative units in the Qinghai-Tibet Plateau in 2015. The data is in the Shapefile format and includes provincial-level administrative units such as the Tibet Autonomous Region, Qinghai Province, Gansu Province, Yunnan Province, and Xinjiang Uygur Autonomous Region in the Qinghai-Tibet Plateau. The 38 prefecture-level administrative units can be used for the geographical background research of the urbanization and ecological environment interaction stress of the Qinghai-Tibet Plateau. It is the basic geographic data for the statistics of urbanization indicators such as social, economic and population levels of the Qinghai-Tibet Plateau. The data is obtained by means of data capture and collected through the administrative interface data acquisition API interface provided by the high-tech map. The data set uses the geographic coordinate system of WGS84.
DU Yunyan
This dataset is the boundary vector data of the provincial-level administrative units in the Qinghai-Tibet Plateau in 2015. The data is in the Shapefile format and includes provincial administrative units such as Tibet Autonomous Region, Qinghai Province, Gansu Province, Yunnan Province, Xinjiang Uygur Autonomous Region, and Sichuan Province. The administrative boundary within the plateau can be used for the geographical background research of the urbanization and ecological environment interaction stress of the Qinghai-Tibet Plateau. It is the basic geographic data for the statistics of the urbanization indicators of the provincial, forest, and population sectors of the Qinghai-Tibet Plateau. The data is obtained by means of data capture and collected through the administrative interface data acquisition API interface provided by the high-tech map. The data set uses the geographic coordinate system of WGS84.
DU Yunyan
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
Geomatics Center of Qinghai Province
This data set is the spatial distribution of soil POPs in the Tibetan Plateau, including OCPs, PCBs, PBDEs and PAHs. Fourty soil samples were taken from remote sites (i.e., away from towns, roads, or other human activity) in 8 soil zones of the Tibetan Plateau in 2007. The samples were collected using a stainless steel hand-held corer.Five cores (0-5 cm), taken over an area of ~100 m2, were bulked together to form one sample. The samples were wrapped in aluminum foil twice and sealed in two plastic bags to minimize the possibility for contamination. All the samples were analyzed at Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Chinese Academy of Sciences. The samples were Soxhlet-extracted, purified on an aluminium/silica column (i.d. 8 mm), a gel permeation chromatography (GPC) column subsequently, and were detected on a gas chromatograph with an ion-trap mass spectrometer (GC-MS, Finnigan Trace GC/PolarisQ) operating under MS–MS mode. A CP-Sil 8CB capillary column (50 m ×0.25 mm, film thickness 0.25 μm) was used for OCPs, PCBs and PBDEs, and a DB-5MS column (60 m ×0.25mm, film thickness 0.25 μm) was used for PAHs. Procedural blanks were prepared. The recoveries ranged from 53% to 130% for OCPs, and 58% to 92% for PAHs. The reported concentrations were not corrected for recoveries.
WANG Xiaoping
The data set contains the Chinese name, English name and the affiliation between the districts and counties in each administrative division of Qinghai. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. Table 1: The table of administrative divisions in Qinghai has 5 fields. Field 1: Regions Interpretation: Chinese names of the regions Field 2: English names of the regions Interpretation: English names of the regions Field 3: Districts and counties Interpretation: Chinese names of the districts and counties Field 4: English names of the districts and counties Interpretation: English names of the districts and counties Field 5: Land area Unit: square kilometers Table 2: The table of division changes of each county has 5 fields. Field 1: Districts and counties Field 2: Year Field 3: Area Unit: square kilometers Field 4: Number of townships Field 5: Number of Village Committees
Qinghai Provincial Bureau of Statistics
Among the different regions in China, Tibet contains the largest number of natural ecosystem types. It is an ideal scientific research base and a natural laboratory for the geosciences, biology and other related disciplines. To better protect this precious natural heritage, to develop and utilize the natural resources rationally and to carry out scientific research, 13 national and autonomous regional nature reserves were established in the Tibetan Autonomous Region in 1984, covering an area of 326,000 square kilometres. These reserves account for 49.3% of the total area of nature reserves in China. By the end of 2012, Tibet had established 47 nature reserves of various types, including 9 national reserves, 14 provincial reserves, 3 municipal reserves, and 21 prefectural reserves, with a total area of 412,200 square kilometres. These reserves accounted for 34.35% of the land area of the Tibetan Autonomous Region and include 22 different types of ecological function reserves. The data were extracted from the Chinese Nature Reserve Specimen Information Sharing Infrastructure. Serial number: unified number of nature reserves Name of the nature reserves Administrative region: administrative region of the nature reserves Area (hectare) Primary protection objects Type: Type of nature reserves Class: Class of the nature reserves Established time: The date the nature reserves were established Responsible authority
Institute of forest ecological environment and protection
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn