This data includes the distribution data of soil bacteria in Namco region of the Qinghai Tibet Plateau, which can be used to explore the seasonal impact of fencing and grazing on soil microorganisms in Namco region. The sample was collected from May to September 2015, and the soil samples were stored in ice bags and transported back to the Ecological Laboratory of Beijing Institute of Qinghai Tibet Plateau Research; This data is the result of amplification sequencing, using MoBio Powersoil ™ Soil DNA was extracted with DNA isolation kit, and the primers were 515F (5 '- GTGCCAAGCGCCGGTAA-3') and 806R (5'GGACTACNVGGGTWTCTAAT-3 '). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and then the similarity between sequences is calculated, and the sequences with a similarity of more than 97% are clustered into an OTU. The Greengenes reference library is used for sequence alignment to remove the sequence that only appears once in the database. The soil moisture content and soil temperature were measured by a soil hygrometer, and the soil pH was measured by a pH meter (Sartorius PB-10, Germany). The soil nitrate nitrogen (NO3 −) and ammonium nitrogen (NH4+) concentrations were extracted with 2 M KCl (soil/solution, 1:5), and analyzed with a Smartchem200 discrete automatic analyzer. This data set is of great significance to the study of soil microbial diversity in arid and semi-arid grasslands.
KONG Weidong
Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.
KONG Weidong
The data set of bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015 collected the bacterial analysis results and conventional water quality parameters of some lakes in the Qinghai Tibet Plateau during 2015. Through sorting, summarizing and summarizing, the bacterial post-treatment products of some lakes in the third pole in 2015 are obtained. The data format is excel, which is convenient for users to view. The samples were collected by Mr. Ji mukan from July 1 to July 15, 2015, including 28 Lakes (bamuco, baimanamuco, bangoso (Salt Lake), Bangong Cuo, bengcuo, bieruozhao, cuo'e (Shenza), cuo'e (Naqu), dawaco, dangqiong Cuo, dangjayong Cuo, Dongcuo, eyaco, gongzhucuo, guogencuo, jiarehbu Cuo, mabongyong Cuo, Namuco, Nier CuO (Salt Lake), Norma Cuo, Peng yancuo (Salt Lake), Peng Cuo, gun Yong Cuo, Se lincuo, Wu rucuo, Wu Ma Cuo, Zha RI Nan Mu Cuo, Zha Xi CuO), a total of 138 samples. The extraction method of bacterial DNA in lake water is as follows: the lake water is filtered onto a 0.45 membrane, and then DNA is extracted by Mo bio powerOil DNA kit. The 16S rRNA gene fragment amplification primers were 515f (5'-gtgccagcmgcgcggtaa-3') and 909r (5'-ggactachvggtwtctaat-3'). The sequencing method was Illumina miseq PE250. The original data were analyzed by mothur software, including quality filtering and chimera removal. The sequence classification was based on the silva109 database. The archaeal, eukaryotic and unknown source sequences had been removed. OTU classifies with 97% similarity and then removes sequences that appear only once in the database. Conventional water quality detection parameters include dissolved oxygen, conductivity, total dissolved solids, salinity, redox potential, nonvolatile organic carbon, total nitrogen, etc. The dissolved oxygen is determined by electrode polarography; Conductivity meter is used for conductivity; Salinity is measured by a salinity meter; TDS tester is used for total dissolved solids; ORP online analyzer was used for redox potential; TOC analyzer is used for non-volatile organic carbon; The water quality parameters of total nitrogen were obtained by Spectrophotometry for reference.
YE Aizhong
The Second Tibetan Plateau Scientific Expedition and Research Task V Theme III "Conservation and Sustainable Utilization of Plateau Microbial Diversity" (2019QZKK0503) carried out more than 30 field scientific expeditions in the first and second years. Footprints cover most of the Tibetan Plateau, including the investigation of glaciers (such as Qiangyong Glacier, Tanggula Glacier, Everest East Rongbu glacier, Jiemayangzong Glacier, Palung 4 Glacier, etc.), lakes, soils, fungi, lichens, animals in Southeast Tibet, Qiangtang Plateau, Cocosili and Himalayan region. The dataset contains 6,471 photos and videos, including habitat photos, working photos, and scientific images collected during the first and second years of fieldwork.
LIU Yongqin
The dataset contains microbial amplicon sequencing data from a total of 269 ice samples collected from 15 glaciers on the Tibetan Plateau from November 2016 to August 2020, including 24K Glacier (24K), Dongkemadi Glacier (DKMD), Dunde Glacier (DD), Jiemayangzong Glacier (JMYZ), Kuoqionggangri Glacier (KQGR), Laigu Glacier (LG), Palung 4 Glacier (PL4), Qiangtang 1 Glacier (QT), Qiangyong Glacier (QY), Quma Glacier (QM), Tanggula Glacier (TGL), Xiagangjiang Glacier (XGJ), Yala Glacier (YA), Zepugou Glacier (ZPG), ZhufengDongrongbu Glacier (ZF). The sampling areas ranged in latitude and longitude from 28.020°N to 38.100°N and 86.28°E to 95.651°E. The 16s rRNA gene was amplified by polymerase chain reaction (PCR) using 515F/907R (or 515F/806R) primers and sequenced with the Illumina Hiseq2500 sequencing platform to obtain raw data. The selected primer sequences were "515F_GTGYCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT" "515F_GTGCCAGCMGCCGCGG; 806R_ GGACTACHVGGGTWTCTAAT". The uploaded data include: sample number, sample description, sampling time, latitude and longitude coordinates, sample type, sequencing target, sequencing fragment, sequencing primer, sequencing platform, data format and other basic information. The sequencing data are stored in sequence file data format forward *.1.fq.gz and reverse *.2.fq.gz compressed files.
LIU Yongqin
Through the scientific research work in 2019 and 2020, the second Tibetan Plateau Scientific Expedition and Research Task 5 Theme 3 Topic 4 Lichen Scientific Research Team (2019QZKK050304) has supplemented the collection of a large number of lichen collection gaps in the Tibetan Plateau region. 2019 scientific research conducted in-depth lichen biodiversity examination for the first time in the Ali region in northern Tibet, and in 2020, fieldwork and specimen collection will be conducted in the lichen collection gap areas of Hoh Xil and Sanjiangyuan. These expeditions have unveiled the mystery of lichen composition in the Tibetan Plateau region and filled the gaps in the domestic collection of this region. This dataset contains information on 10,283 lichen specimens collected from July 2019 to September 2020 in Tibet Autonomous Region, Qinghai Province, Sichuan Province, and Yunnan Province, including information on collection habitat, collection time, collector, latitude and longitude, altitude, and Latin scientific name. Contains 4,328 specimen photos, including lichen specimen No. 815 in 2019 with 2,425 photos and specimen No. 543 in 2020 with 1,903 photos. The physical specimens are stored in the Herbarium, Kunming Institute of Botany, CAS (KUN). Specimen collection information and field ecological photographs are synchronized between various databases, including the Biotracks database and the KUN herbarium database, to facilitate later research, collation and query by relevant personnel. The specimens are now sorted by time, region and genus name and stored separately in the KUN herbarium to facilitate subsequent studies, and the corresponding molecular materials are preserved or molecular sequences are obtained, laying a good material basis for subsequent taxonomic and systematics studies of the specimens. DNA extraction and systematic taxonomic studies of various groups are also being carried out.
WANG Xinyu
In order to study the population evolution history and local adaptive genetic mechanism of the main domesticated equine animals in the Qinghai Tibet Plateau and its surrounding areas, and to establish the corresponding germplasm genetic resource bank. We sequenced the equine samples collected in Qinghai Province, Tibet Autonomous Region and Xinjiang Autonomous Region from the Qinghai Tibet Plateau and surrounding areas, including Tibetan donkey, plain donkey and other breeds. Sequencing includes denove and resequencing data, which provides data for tracing the historical events of domestication, migration, expansion and other groups of the main equine domesticated animals in the region, and further exploring the adaptation mechanism of equine animals to the harsh environment such as hypoxia, cold, and dryness. At the same time, all tissues of domestic donkeys were sequenced, including hifi genome data and HIC genome data, to prepare for the assembly of complete donkey genome and facilitate subsequent analysis.
LI Yan
Biodiversity is the sum of the ecological complex formed by organisms and their environment and various ecological processes related to it. It is expressed at all organizational levels of the life system, including genetic diversity, species diversity and ecosystem diversity. The higher the habitat quality, the better the biological habitat environment and the higher the biodiversity. In some studies, the habitat quality index was used to characterize biodiversity (Xiao Qiang et al. 2014). Habitat quality index (HQ) is a dimensionless comprehensive index to evaluate the habitat suitability and habitat degradation degree of regional land use types. Cultivated land, roads, towns and rivers are used as habitat stress factors to form sensitivity parameters. For the production of biodiversity products, the biodiversity modeling of ecosystem in national barrier area is studied based on land use data and invest model. Invest model has the advantages of less input data, large output data and quantitative analysis of abstract ecosystem service functions. It is an important means of biodiversity assessment at present. Based on the actual situation of land use in the Qinghai Tibet Plateau, five land use types with great impact of human activities, paddy field, dry land, urban land, rural residential area and other construction land, are selected as threat factors. Taking the land use data as the input variable of the invest model, the land biodiversity of the Qinghai Tibet Plateau with a resolution of 1 km from 2000 to 2020 is estimated based on the parametric model.
WANG Xiaofeng
We investigated and collected the germplasm resources of cyanine in the Qinghai Tibet Plateau and its surrounding areas, carried out homogenous garden experiments to obtain phenotypic data, used genome sequencing technology to obtain data libraries and construct high-quality reference genomes. Using the re sequencing technology to analyze the structure of the cyanine population, combined with the early human migration and diffusion routes, this paper explores the historical process of the formation of the modern geographical distribution pattern of the cyanine on the Qinghai Tibet Plateau. By correlation analysis with phenotypic data, the adaptive mechanism of modern populations of cyanine was analyzed. Understand the environmental differences of the pan third pole and the impact of human activities and cultural differences in different regions on the migration, adaptation and domestication of plants on the Qinghai Tibet Plateau from the whole genome level.
DUAN Yuanwen
We investigated and collected the germplasm resources of cyanine in the Qinghai Tibet Plateau and its surrounding areas, carried out homogenous garden experiments to obtain phenotypic data, used genome sequencing technology to obtain data libraries and construct high-quality reference genomes. Using the re sequencing technology to analyze the structure of the cyanine population, combined with the early human migration and diffusion routes, this paper explores the historical process of the formation of the modern geographical distribution pattern of the cyanine on the Qinghai Tibet Plateau. By correlation analysis with phenotypic data, the adaptive mechanism of modern populations of cyanine was analyzed. Understand the environmental differences of the pan third pole and the impact of human activities and cultural differences in different regions on the migration, adaptation and domestication of plants on the Qinghai Tibet Plateau from the whole genome level.
DUAN Yuanwen
We investigated and collected the germplasm resources of cyanine in the Qinghai Tibet Plateau and its surrounding areas, carried out homogenous garden experiments to obtain phenotypic data, used genome sequencing technology to obtain data libraries and construct high-quality reference genomes. Using the re sequencing technology to analyze the structure of the cyanine population, combined with the early human migration and diffusion routes, this paper explores the historical process of the formation of the modern geographical distribution pattern of the cyanine on the Qinghai Tibet Plateau. By correlation analysis with phenotypic data, the adaptive mechanism of modern populations of cyanine was analyzed. Understand the environmental differences of the pan third pole and the impact of human activities and cultural differences in different regions on the migration, adaptation and domestication of plants on the Qinghai Tibet Plateau from the whole genome level.
DUAN Yuanwen
Naked barley, called highland barley in Tibet, is the main crop of the Tibetan plateau and the main food of the Tibetan people. It has a long planting history, the largest planting area, the widest distribution and the highest planting ceiling. As for the autonomous region, the annual sown area and total grain output account for more than half of the total sown area and total grain output. In river valleys below 4,200 meters, they account for 30-50% of the area sown to local crops. In the alpine farming area of 4,200-4,500 meters above sea level, it accounts for 70-90% of the planting area of local crops. Naked barley is almost the only crop at agricultural sites above 4,500 meters. Tibetan bare barley has strong cold and drought resistance and ADAPTS to the plateau climate conditions. It is distributed in the vast agricultural areas and farming-pastoral interlacing areas from more than 1,000 meters to 4,500 meters above sea level. At present, the upper limit of planting reaches 4750 meters, which is the highest limit of crop distribution in Tibet. In 1974, a comprehensive scientific expedition to the Qinghai-Tibet Plateau entered Tibet from Sichuan province and carried out investigations along the route. During a survey of wild barley in Jitang district, Chaya County, Qamdo region, Tibetan members provided information about semi-wild wheat, which is similar to wheat in morphology but has broken cob at maturity, and is generally mixed with highland barley and wheat fields as a field weed. Plant specimens and seeds were collected. When the expedition team arrived at the Institute of Agricultural Science and Technology of Tibet Autonomous Region, they learned that comrades Cheng Tianqing and Dong Yuao had collected a kind of wheat with broken cob at maturity in SAN 'an Qu Lin, Longzi County, Shannan Prefecture in 1962, which belonged to the same type as the materials we had collected in other areas of Tibet. Later, in the Xigaze regional agricultural research institute, Comrade Tan Changhua said that he had also seen this kind of wheat when the cob broke at maturity in Renbu County. In addition to the above areas, this wild wheat was also found near Jiacha county, Gongga County and Longzi County in Shannan during this year's investigation. Currently known distribution areas include lancang River basin, Yarlung Zangbo River basin and Longzi River basin.
LU Jimei
Agriculture in Tibet is concentrated in the valleys of the Yarlung Zangbo River in south Tibet and the Nu, Lancang and Jinsha Rivers in east Tibet. The agricultural area of the valley accounts for 75 percent of the total cultivated land area of the autonomous region, and the grain output accounts for more than 80 percent of the total grain output of the autonomous region. Wheat and naked barley (known as highland barley in Tibet) are the main grain crops in The Tibet Autonomous Region, with the perennial sown area accounting for more than 80% of the total sown area, while the wheat and naked barley in the valley agricultural areas account for 75% of the sown area and 82% of the total yield of the region. The agricultural area of the valley is located between 28 ° and 31° north latitude, 2700 -- 4100 meters above sea level. It belongs to the temperate climate of the plateau, with better soil and water conservancy conditions and higher crop yield. But before liberation, under the dark feudal serfdom, the people lived in extreme poverty, and agricultural production was very backward, with the yield of grain per mu only over 100 jin. After liberation, especially since 1972, winter wheat was widely promoted in the agricultural areas of the valley, which promoted the reform of the farming system and significantly increased grain output. In 1975, the total grain output of the region increased by more than 50 percent compared with 1965, and by more than 1.5 times that of 1958 before the democratic reform. In 1977, the area sown with winter wheat was nearly 700,000 mu, accounting for about 20 percent of the grain sown area. The planting area of winter wheat has expanded from areas with an altitude of less than 3,000 meters to areas with an altitude of less than 4,100 meters, and the Tibetan Plateau has developed from a historical area of spring wheat into an area where both spring and winter wheat are grown. In 1977, the average yield of winter wheat per mu in the agricultural areas of the valley exceeded 400 jin, and that of bare barley and spring wheat also reached 300 jin per mu.
LU Jimei
Certain hydrothermal conditions and soil conditions are the basis of crop growth. The Tibetan Plateau covers a vast area, and the changes of altitude and surface form in different areas are extremely complex. Plateau climate and soil have obvious spatial changes, so the distribution of cultivated land and crops has a large regional. There are two groups of high mountain ranges running east-west and north-south in Tibet, forming the basic framework of the plateau. The vast plateau is distributed between the mountains, and there are many low mountains, hills, lake basins and valley inlaid in the meantime, the overall terrain of the whole region gradually picked up from the southeast to the northwest, the southeast is lower, the west, the north is higher. The majestic Himalayas stand on the southern and western borders of China and India, China and Nepal, China and Tin, China and Bhutan, and China and Pakistan. With a total length of 2,400 kilometers and a mountain width of 200-300 kilometers, and an average elevation of more than 6,000 meters, they constitute a natural barrier to the southern part of the Qinghai-Tibet Plateau. The warm and wet airflow in the Bay of Bengal is blocked by mountains. The climate on the southern slope of the Himalayas is warm and humid, while that on the northern foothills of the Himalayas is warm and cool and dry, forming two different climate regions on the southern and northern slopes. The south side of the Himalayas mountain rivers deep, mountain canyon landform. The valley is more than 3000 meters above sea level, and the climate is warm and humid. The soil types are rich, mainly including mountain yellow soil, mountain brown soil, mountain brown soil and mountain meadow soil, etc. The soil is acidic to neutral, and contains rich humus, high nitrogen content, coarse texture and good permeability. Abundant surface runoff, irrigation conditions are better. However, due to terrain limitations, most of the land cannot be used because the slope is greater than 25 degrees, and most of the land is covered by forests. Arable land is mainly distributed in the valley below 4000 meters, the area is very limited.
LU Jimei
Information of animal samples, tissue samples, DNA bar code samples and other physical samples collected in the second year (from the end of 2020 to 2021) of the fifth topic of the second comprehensive scientific investigation and research task of the Qinghai Tibet Plateau - "conservation and sustainable utilization of animal diversity on the plateau" (2019QZKK0501). All data shall be sorted according to the subject and sub subject, and the folder shall be named according to the subject number and sub subject number. Each sample table contains one or more sample information tables. Each information table contains sub topic number, species, collection place, collection time, collector, sample type, storage method and other information.
ANIMAL RESOURCE PLATFORM OF QINGHAI-TIBET PLATEAU Animal Resource Platform of Qinghai-Tibet Plateau
1) Data content: changes in genetic diversity of 10 amphibians and reptiles on the Qinghai Tibet Plateau in the face of future climate change. 2) Data source and processing method: Based on the bar code data of 10 amphibians and reptiles on the Qinghai Tibet Plateau, combined with SDM, MPTP approach and other software, the genetic diversity and distribution in 2050, 2070 and 2090 in the future are constructed. 3) Data quality description: the data quality is verified, and the data analysis personnel are strictly trained in the laboratory. 4) Results and prospects of data application: it is found that amphibians and reptiles distributed in the north of Qinghai Tibet Plateau need more attention in protection.
SHEN Wenjing
Based on the distribution locations of the Qinghai toad-headed lizard (Phrynocephalus vlangalii) collected by field investigation and literature investigation, combined with five climate factors from WorldClim database, the current (1960-1990) and future (2061-2080) climate data were input into the trained species distribution model to predict the current and future suitable habitats. The prediction results shows that the lizard will lose a lot of original habitats under the climate change, and the protection measures for the lizard species should focus on the eastern margin of Qinghai-Tibet Plateau, the northern and eastern parts of Qaidam Basin. The model also predicts that after the climate change, new suitable habitats will appear in areas that were not suitable for the Qinghai toad-headed lizard. However, due to the very limited diffusion ability of reptiles (the maximum annual diffusion distance recorded in the literature is less than 500m), the newly emerging suitable habitats may not be used by the Qinghai toad-headed lizard. Meanwhile, based on the physiological, life history, behavior and morphological data of three altitudinal populations of the Qinghai toad-headed lizard collected by field work, and combined with microclimate data, the physiological consequences of climate change on the Qinghai toad-headed lizard in the current suitable distribution area were predicted by using the mechanism niche model. The prediction results of the model show that, whether in the SSP245 or SSP585 climate change scenarios, the activity time of the lizard will increase in most areas (> 93%) of the current suitable distribution area, and the thermal safety threshold will decrease in all places of the current suitable distribution area. The increase of activity time of high-altitude populations is less than that of low-altitude populations, but the decrease of thermal safety threshold is greater than that of low-altitude populations. The results reveal that climate change may have a greater impact on lizard populations in high altitude areas.
ZENG Zhigao
1) Data content: comparative analysis results of species diversity of Pan third polar amphipods centered on the Qinghai Tibet Plateau in 2021; 2) Data sources and processing methods: Based on 567 genetic data from the Qinghai Tibet Plateau and its surrounding areas, the phylogenetic tree was constructed by beast software; Based on 3180 distribution data of Qinghai Tibet Plateau, including longitude, latitude and altitude, the predicted distribution maps of LGM, mid hologene, present and future periods are constructed by using ArcView and MaxEnt software; 3) Data quality description: sample collection and longitude, latitude and altitude information are checked to ensure the quality of distribution data. Analysts have been strictly trained in the laboratory; 4) Results and prospects of data application: it is found that the pan third pole with the Qinghai Tibet Plateau as the core includes rich species diversity of amphipods, but most species have not been officially described and published, which needs to be carried out in the next step. The study provides a scientific basis for biodiversity assessment and ecological protection in Tibet.
HOU Zhonge
In order to master the species composition, floristic characteristics and host information of plateau agricultural and animal husbandry elephants and related natural enemy insects such as Coleoptera, Neuroptera and Diptera, establish a DNA bar code rapid identification system of plateau agricultural and animal husbandry natural enemy insects, evaluate the current situation of natural enemy resources, and put forward suggestions for the sustainable utilization of natural enemy insects. The sub project 2019qzkk05010606 carried out the investigation of natural enemy insect resources in key agricultural and pastoral areas, bulk crop related elephants, Coleoptera, Neuroptera and Diptera on the Qinghai Tibet Plateau, the construction of natural enemy insect species diversity database, and the evaluation of the current situation and sustainable utilization of natural enemy resources. During 2020, the Tibet Autonomous Region, the farming pastoral ecotone, the Farming Forestry ecotone, and the hinterland of farming and pastoral areas in Yunnan Province will carry out the investigation of key groups of natural enemy insects such as Coleoptera, Neuroptera and Diptera, collect samples, biological information and ecological environment information, systematically sort out the samples of natural enemy insects according to the standards and norms, and effectively preserve them, Carry out species morphological identification and obtain DNA bar code information, integrate species geographical distribution, host information, ecological pictures and other information, and build a natural enemy species diversity information database; Evaluate the current situation of natural enemy resources and put forward suggestions for sustainable utilization.
LIU Ning
In order to master the species composition, floristic characteristics and host information of plateau agricultural and animal husbandry elephants and related natural enemy insects such as Coleoptera, Neuroptera and Diptera, establish a DNA bar code rapid identification system of plateau agricultural and animal husbandry natural enemy insects, evaluate the current situation of natural enemy resources, and put forward suggestions for the sustainable utilization of natural enemy insects. The sub project 2019qzkk05010601 carried out the investigation of natural enemy insect resources in key agricultural and pastoral areas, bulk crop related elephants, Coleoptera, Neuroptera and Diptera on the Qinghai Tibet Plateau, the construction of natural enemy insect species diversity database, and the evaluation of the current situation and sustainable utilization of natural enemy resources. During 2020, the Tibet Autonomous Region, the farming pastoral ecotone, the Farming Forestry ecotone, and the hinterland of farming and pastoral areas in Yunnan Province will carry out the investigation of key groups of natural enemy insects such as Coleoptera, Neuroptera and Diptera, collect samples, biological information and ecological environment information, systematically sort out the samples of natural enemy insects according to the standards and norms, and effectively preserve them, Carry out species morphological identification and obtain DNA bar code information, integrate species geographical distribution, host information, ecological pictures and other information, and build a natural enemy species diversity information database; Evaluate the current situation of natural enemy resources and put forward suggestions for sustainable utilization.
QIAO Gexia
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn