To describing the quantity of atmospheric water resource gaining over the TP, we provide two indexs based on ERA5 monthly reanalysis. One is called column water income (CWI), defined as the sum of vertical integrated divergence of water vapor flux and surface evaporation. It is 0.25 ×0.25 gridded with unit of kg/m2 or millimeter. Another one is Atmospheric water tower index (AWTI), total of net income of atmospheric water resource for the entire TP area, i.e., and unit is Gt.
YAN Hongru
The land-sea thermal contrast is an important driver for monsoon interannual and interdecadal variability and the monsoon onset. The importance of the thermal contrast between the Tibetan Plateau (TP) and the Indian Ocean (IO) in driving the establishment of Indian Summer Monsoon (ISM) has been recognized. The South Asian Summer Monsoon (SASM) is primarily a tropical summer monsoon. As a direct dynamic response to the diabatic heating, the difference between upper and lower-layer winds can be closely linked to the strength of the heat source. The upper-layer thermal contrast is more important for the SASM (Sun et al., 2010; Sun and Ding,2011; Dai et al., 2013). Thermal contrast between the TP and the IO at the mid-upper troposphere is closely related to the onset and the variability of ISM. Considering that the temperature above the TP and IO are the two centers which are most sensitive to the change of ISM, a thermal contrast index (TCI) is proposed based on 500-200hPa air temperature: TCI = Nor[T(25°N-38°N, 65°E-95°E) - T(5°S-8°N, 65°E-95°E)] Where Nor represents standardization and T is 500-200hPa air temperature. The TCI is larger, and the ISM is stronger. The TCI can capture the interannual and interdecadal variability of ISM well. The cooperative thermal effect between TP and IO may contributes more to the ISM than the separately temperature of TP or IO. In addition, from the view of climate mean state, the pentad-by-pentad increment of TCI has a 15-pentad lead when the correlation coefficient between it and the ISM index reaches the maximum. And the correlation coefficient between the pentad-by-pentad increment of TCI and the ISM index is significant when the pentad-by-pentad increment of TCI has a 3-pentad lead. The result indicates the advantage of the TCI for prediction of the ISM. Meanwhile, the averaged pentad-by-pentad increment of TCI for the first 25 (TCI25) pentads may be a predictor of the early or late onset of the ISM. The ISM onset will be earlier when the TCI25 is larger.
LI Zhangqun, XIAO Ziniu, ZHAO Liang
1) Data content : total column water / precipitable water; 2) Data sources and processing methods: ECMWF-interm monthly mean analysis; 3) Data quality description: time resolution: monthly, spatial resolution: 0.7°*0.7°; 4) Data application results and prospects: this data can be used for analysis of water resources in the air.
YAN Hongru
This dataset contains monthly 0.05°×0.05° (1982, 1985, 1990, 1995, and 2000) and 0.01°×0.01° (2005, 2010, 2015 and 2017) LST products in Qilian Mountain Area. The dataset was produced based on SW algorithm by AVHRR BT from thermal infrared channels (CH4: 10.5µm to 11.3µm; CH5: 11.5µm to 12.5µm) at a resolution of 0.05°, MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include IGBP land cover type, AVHRR NDVI products, Modern Era Retrospective-Analysis for Research and Applications-2 (MERRA-2) reanalysis data, ASTER GED, Lat/Lon and the Julian Day information.
WANG Junbo, SHAO Xuemei
This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.
Luo Lun
This data set includes daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, water vapour pressure and other elements obtained from the Integrated Observation and Research Station of the Westerly Environment in Muztagh Ata from 18 May 2003 to 31 December 2016. The data are obtained by an automatic meteorological station (Vaisala) that recorded one measurement every 30 minutes. The data set was processed as a continuous time series after the original data were quality controlled. This data set satisfies the accuracy requirements of the meteorological observations of the National Weather Service and the World Meteorological Organization (WMO), and the systematic errors caused by the tracking data and sensor failure have been eliminated. The data set has mainly been applied in the fields of glaciology, climatology, environmental change research, cold zone hydrological process research and frozen soil science. Furthermore, this data set is mainly used by professionals engaged in scientific research and training in atmospheric physics, atmospheric environment, climate, glaciers, frozen soil and other disciplines.
WANG Yuanwei, XU Baiqing
The measurement data of the sun spectrophotometer can be directly used to perform inversion on the optical thickness of the non-water vapor channel, Rayleigh scattering, aerosol optical thickness, and moisture content of the atmospheric air column (using the measurement data at 936 nm of the water vapor channel). The aerosol optical property data set of the Tibetan Plateau by ground-based observations was obtained by adopting the Cimel 318 sun photometer, and both the Mt. Qomolangma and Namco stations were involved. The temporal coverage of the data is from 2009 to 2016, and the temporal resolution is one day. The sun photometer has eight observation channels from visible light to near infrared. The center wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm. The field angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. According to the direct solar radiation, the aerosol optical thickness of 6 bands can be obtained, and the estimated accuracy is 0.01 to 0.02. Finally, the AERONET unified inversion algorithm was used to obtain aerosol optical thickness, Angstrom index, particle size spectrum, single scattering albedo, phase function, birefringence index, asymmetry factor, etc.
CONG Zhiyuan
The assessment of changes in the atmospheric water cycle and the associated impacts in a key area of the Tibetan Plateau under the background of the global warming was a major component of the research project “The Environmental and Ecological Science of West China” run by the National Natural Science Foundation of China. The leading executive of the project was Xiangde Xu from the Chinese Academy of Meteorological Sciences. The project ran from January 2006 to December 2008. The following data were collected by the project of the Sino-Japan Joint Research Center of Meteorological Disaster (JICA Project): 1. Observation category, time period and number of stations 1) JICA AWS data: From January to July of 2008, 73 automatic stations (including 5 automatic stations of the Chinese Academy of Sciences) collected data in Tibet, Yunnan, Sichuan and other provinces or autonomous regions. 2) JICA GPS water vapour data: From January to October of 2008, 24 observation stations collected data in Tibet, Yunnan, Sichuan and other provinces or autonomous regions. 3) JICA encrypted observation GPS sonde data: From March to July of 2008, observations were made in Tibet, Yunnan, Sichuan and other provinces or autonomous regions (detailed observation time and location data can be found in the data catalogue). 2. Observation categories, data content 1) GPS water vapour Data content: serial number, station name (Chinese), station number, longitude, latitude, altitude, year, month, day, time, surface pressure, surface air temperature, relative humidity, total delay (m), precipitation (cm) (Measurement interval: 1 hour). 2) GPS encrypted sonde Data content: air pressure P, temperature T, relative humidity RH, V component, U component, vertical height H, dew point temperature Td, water vapour content Mr, wind direction Wd, wind speed Ws, longitude Lon, latitude Lat, radar height RdH. A value of "-999.90" means no observation data. 3) AWS Data content: station number, longitude, latitude, elevation, site level, total cloud volume, wind direction, wind speed, sea level pressure, 3-hour pressure variable, past weather 1, past weather 2, 6-hour precipitation, low cloud form, low cloud volume, low cloud height, dew point, visibility, current weather, temperature, medium cloud form, high cloud form, 24-hour temperature variable, 24-hour pressure variable. Project Science Advisers: Guoguang Zheng, Xiaofeng Xu, Xiuji Zhou, Zechun Li, Jifan Niu, Jianmin Xu, Lianshou Chen, Dahe Qin, Yihui Ding Project Superintendent: Jixin Yu Project Executives: Renhe Zhang, Xiangde Xu Data set hosting organizations: Chinese Academy of Meteorological Sciences, JICA Project Implementation Expert Group, State Key Laboratory of Severe Weather, JICA Project Implementation Office. Collaborative organizations involved in the production of the data set: Chinese Academy of Meteorological Sciences, State Key Laboratory of Severe Weather, National Satellite Meteorological Center, The Research Center for Atmospheric Sounding Techniques, National Meteorological Center, National Meteorological Information Center, National Climate Center, Sichuan Meteorological Department, Yunnan Meteorological Department, Tibet Autonomous Region Meteorological Department, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Tianjin Meteorological Department. Data set implementation organizations: Beijing Headquarters of JICA Project; JICA Project Sub-center in Sichuan Province, Yunnan Province, Tibet Autonomous Region and Institute of Tibetan Plateau Research, Chinese Academy of Sciences.
XU Xiangde
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn