The dataset based on synthesized data from 1114 sites across the Tibetan permafrost region which report that paleoclimate is more important than modern climate in shaping current permafrost carbon distribution.A new estimate of modern soil carbon stock to 3m depth on Tibetan permafrost region was derived by machine learning algorithm, including factors such as climate (paleoclimate and modern climate), vegetation, soil (soil thickness and soil physical and chemical properties, etc.) and topography. This dataset shows that ecosystem models clearly underestimated the Tibetan soil carbon stock, due to the absence of paleoclimate effects in the model. Future modelling of soil carbon cycling should include paleoclimate .
DING Jinzhi
Based on the distribution locations of the Qinghai toad-headed lizard (Phrynocephalus vlangalii) collected by field investigation and literature investigation, combined with five climate factors from WorldClim database, the current (1960-1990) and future (2061-2080) climate data were input into the trained species distribution model to predict the current and future suitable habitats. The prediction results shows that the lizard will lose a lot of original habitats under the climate change, and the protection measures for the lizard species should focus on the eastern margin of Qinghai-Tibet Plateau, the northern and eastern parts of Qaidam Basin. The model also predicts that after the climate change, new suitable habitats will appear in areas that were not suitable for the Qinghai toad-headed lizard. However, due to the very limited diffusion ability of reptiles (the maximum annual diffusion distance recorded in the literature is less than 500m), the newly emerging suitable habitats may not be used by the Qinghai toad-headed lizard. Meanwhile, based on the physiological, life history, behavior and morphological data of three altitudinal populations of the Qinghai toad-headed lizard collected by field work, and combined with microclimate data, the physiological consequences of climate change on the Qinghai toad-headed lizard in the current suitable distribution area were predicted by using the mechanism niche model. The prediction results of the model show that, whether in the SSP245 or SSP585 climate change scenarios, the activity time of the lizard will increase in most areas (> 93%) of the current suitable distribution area, and the thermal safety threshold will decrease in all places of the current suitable distribution area. The increase of activity time of high-altitude populations is less than that of low-altitude populations, but the decrease of thermal safety threshold is greater than that of low-altitude populations. The results reveal that climate change may have a greater impact on lizard populations in high altitude areas.
ZENG Zhigao
This data is based on the modified radiosonde observation data of 2008 used by Chen et al. 2016, Chen et al. 2011 and Chen et al. 2013. The vertical resolution of the processed atmospheric wind speed, wind direction, temperature, relative humidity and pressure is 20m. The data of three observation stages in 2008 are processed, namely iop1, IOP2 and iop3. Iop1 started from February 25, 2008 to March 19, 2008, IOP2 from May 13, 2008 to June 12, 2008, and iop3 from July 7, 2008 to July 16, 2008.
CHEN Xuelong, MA Yaoming
1) Data content : total column water / precipitable water; 2) Data sources and processing methods: ECMWF-interm monthly mean analysis; 3) Data quality description: time resolution: monthly, spatial resolution: 0.7°*0.7°; 4) Data application results and prospects: this data can be used for analysis of water resources in the air.
YAN Hongru
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn