The data of Cenozoic plant macrofossils on the Qinghai Tibet Plateau includes leaves, seeds and fruits. It includes Latin and Chinese names of families, genera and species, times, places of origin, morphological descriptions, discussions, specimens and references. The species names are assigned according to the original literature. For fossil records revised by later research, the revised records were chosen; The age of the origin (fossil site) is assigned according to the latest literature. The terms and description paradigm of leaf shape description are referred to the book "Leaf Structure Manual"; The length, angle, and other measurement data in the description are derived from the original literature. The fossil records of the document are sorted alphabetically by Latin initials of families and genera. The data can provide important clues for studying the coupling relationship between the environmental climate changed and the evolution of vegetation and plant diversity in the Cenozoic Qinghai Tibetan Plateau.
ZHOU Zhekun , LIU Jia , CHEN Linlin , ROBERT Spicer , LI Shufeng , HUANG Jian , ZHANG Shitao , HUANG Yongjiang , JIA Linbo , HU Jinjin , SU Tao
This data is the plant diversity and distribution data of the chnab005 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of the plants in this grid. This data is obtained from e-Science website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list of plants in this flora and the specific distribution information. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region. What is different from last year is that the grid with the most scientific research data this year has changed, which may be affected by the epidemic or the environment.
DENG Tao
Understanding the modern relationships between pollen and vegetation, climate, and human land-use completely, is essential for quantitative reconstructions of past vegetation, climate and human impacts. supported by the Second Tibetan Plateau Scientific Expedition Program, we have collected more than 700 surface-soil samples together with detail vegetation survey. Hitherto, pollen analysis of 318 samples have been completed, and the submitted modern pollen dataset includes the pollen percentages of 24 common taxa, the sampling sites of the dataset cover the all vegetation types on the east and central Tibetan Plateau. The dataset can be utilized in establishment for pollen-climate, pollen-vegetation calibration-sets.
CAO Xianyong
The growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is poorly understood. We approach this question by integrating modeling results and fossil data. We show that growth of north and northeastern Tibet affects vegetation and, crucially, plant diversity in eastern Asia by altering the monsoon system. This northern Tibetan orographic change induces a precipitation increase, especially in the dry (winter) season, resulting in a transition from deciduous broadleaf vegetation to evergreen broadleaf vegetation and plant diversity increases across southeastern Asia. Further quantifying the complexity of Tibetan orographic change is critical for understanding the finer details of Asian vegetation and plant diversity evolution. *: Corresponding author
SU Tao
The Qinghai–Tibetan Plateau (QTP) played a crucial role in shaping the biodiversity in Asia during the Cenozoic. However, fossil records attributed to insects are still scarce from the QTP, which limits our understanding on the evolution of biodiversity in this large region. Fulgoridae (lanternfly) is a group of large planthopper in body size, which is found primarily in tropical regions. The majority of the Fulgoridae bear brilliant colors and elongated heads. The fossil records of Fulgoridae span from the Eocene to Miocene in the Northern Hemisphere, and only a few fossil species from Neogene deposits have been reported in Asia so far. Here, we report a new fossil record of Fulgoridae from the middle Eocene Lunpola Basin, central QTP. The specimen is in lateral compression, with complete abdomen, thorax, and part of the wings preserved, while most of the head is missing. It belongs to the “lower Fulgoroidea” judging by several strong lateral spines on the hind tibia and a row of teeth at the apex of the second metatarsomere. This fossil specimen is assigned to Fulgoridae by comparison with nine families of the “lower Fulgoroidea”. The specimen represents the earliest Fulgoridae fossil record in Asia and was considered a new morphotaxon based on the peculiar legs and wings. Based on the modern distribution of fulgorid and other paleontological evidence, we suggest a warm climate with relatively low elevation during the middle Eocene in the central QTP. Therefore, this new fossil record not only provides important information on insect diversity in the middle Eocene, but also gives new evidence on the paleoenvironment in the core area of the QTP from the perspective of an insect.
SU Tao
Sclerophyllous evergreen broad-leaved forests, mainly made up of sclerophyllous oak, Quercus section Heterobalanus (Øerst.) Menitsky, Fagaceae, represent the most typical forest type in the Hengduan Mountains. Their distribution pattern is closely related to the growth and formation of the Qinghai-Tibetan Plateau (QTP). The oldest fossil record of Quercus sect. Heterobalanus so far discovered is from the middle Miocene of the Gazhacun Formation in Namling County, southern Tibet. However, our recent discovery of leaf fossils from the upper Eocene of Lawula Formation in Markam Basin, southeastern Tibet, illustrates that their origin is nearly 20 Myr older than previously assumed. By integrating the results from geometric morphometrics, geographical range expansion, and ecological niche shifts of this section in what is now the QTP and the Hengduan Mountains, we infer that the leaves of Quercus sect. Heterobalanus were already adapted to cool and dry conditions in some local regions no later than in the late Eocene. Then, with the growth of the QTP and late Cenozoic global cooling, the expansion of cooler and drier habitats benefited the spread and development of this section and their leaves exhibited morphological stasis through stabilizing selection. Based on published fossil records and recent discoveries, we argue that Quercus sect. Heterobalanus appeared in the subtropical evergreen and deciduous broad-leaved mixed forests of the southeastern margin of what is now the QTP no later than in the late Eocene. Some taxa spread westwards along the Gangdese Mountains and later the Himalaya, and others spread eastwards and southeastwards, gradually becoming a dominant group of species in the Hengduan Mountains. This dispersal route is contrary to the previous “northwards hypothesis” of this section, and further supports the hypothesis of an East Asian origin for Quercus section Ilex Loudon.
SU Tao
This data including the GDGTs data and fatty acid data records of Xiada Co in the west of Qinghai Tibet Plateau during the past 2000 years. These data are obtained by the research team using organic geochemical methods. The Xiada Co sediment core was collected in the summer of 2014. The water depth of the sampling point (33.392°N、79.363°E,4373m) is about 19m. The extraction of biomarkers in lake sediments was carried out by ultrasonic extraction. The extraction and testing of compounds were carried out in the laboratory of environmental change and surface processes, Institute of Qinghai Tibet Plateau, Chinese Academy of Sciences. The detection instrument of wax fatty acid compounds in sediments is gas chromatography flame ion detector (GC-FID, model: Agilent 7890a). The test instrument for GDGTs compounds is HPLC-APCI-MS (Agilent 1200 HPLC + 6100 MS), which is tested by three chromatographic columns in series. The model of chromatographic column is (hypersil gold silica, 100 mm) × 2.1 mm, 1.9 μ m). 5-methyl bgdgts isomer and 6-methyl bgdgts isomer were effectively separated by silica gel column in series. This data can provide the climatic and environmental background of human activities in the western plateau of the late Holocene, provide a basis for understanding the process and mechanism of climate change in the western Qinghai Tibet Plateau in the past 2000, and provide boundary conditions for climate simulation.
HOU Juzhi, LI Xiumei
In order to find out the climate and environmental changes since the last interglacial period in Central Asia, the earth ring Institute of Chinese Academy of Sciences, taking tree rings, lakes, stalagmites and loess as carriers, conducted in-depth research on their evolution from different aspects. The tree ring group collected tree ring samples and obtained the data of tree ring width in alagan, Yuli County, Xinjiang; The lake marsh formation collected lake marsh sediments in Kashgar basin and obtained 137cs-210pb, LOI δ 18O data; The stalagmites collected by the stalagmite formation in qiongguo cave, Qinghai Tibet Plateau have obtained carbon and oxygen isotopes, test age and element test data; The comprehensive group obtained the XRF and multi parameter data of peat in Longmucuo and dangyayongcuo lakes, the particle size of Longmucuo in Lop Nur, Xinjiang and Tibet, the magnetic susceptibility of peat in Kashgar and Longmucuo lakes, and the TOC data of Zhaosu; The Loess group obtained the OSL ages, MS and carbon epitope data of the Loess of xiaoerbu, Zhaosu and Qingshuihe in Xinjiang. It provides strong scientific data support for climate and environmental changes since the last interglacial period in Central Asia.
LI Qiang , LAN Jianghu , TAN Liangcheng , LIU Xingxing , SONG Yougui
The fluctuation of a single lake level is a comprehensive reflection of water balance within the basin, while the regional consistent fluctuations of lake level can indicate the change of regional effective moisture. Previous researches were mainly focused on reconstructing effective moisture by multiproxy analyses of lake sediments, but lacked the quantitative studies on regional effective moisture variation. This dataset exhibits the Holocene effective moisture change in typical lake regions of the Tibetan Plateau and East and Central Asia, including Qinghai Lake, Chen Co, Bangong Co, etc., by constructing a virtual lake system, based on a lake energy balance model, a lake water balance model and a transient climate evolution model. The simulation results provide a new perspective for exploring the evolution of lakes on the millennial scale.
LI Yu
This dataset is the biome change data of the Tibetan Plateau since the last glacial maximum which was reconstructed by using a new method. Firstly, a random forest algorithm was applied to establish a pollen-biome classification model for reconstructing past vegetation changes of the Tibetan Plateau, and 1802 modern pollen assemblages from 17 vegetation zones in and around the Tibetan Plateau were used as the training set for the model development. The random forest model showed a reliable performance (accuracy > 76%) in predicting modern biomes from modern pollen assemblages based on a comparison with the observed biomes. Moreover, the random forest model had a significantly higher accuracy than the traditional biomization method. Then, the newly established random forest model is applied to the paleovegetation reconstruction of 51 fossil pollen sequences of the Tibetan Plateau. New age-depth models were developed for these fossil pollen records using the Bayesian method, and all fossil pollen records were linearly interpolated to 500-year time slices. Finally, the spatiotemporal changes of biomes on the Tibetan plateau over the past 22,000 years at an interval of 500 years were reconstructed by using the random forest model. This dataset can provide evidence for understanding the past variation of alpine vegetation and its mechanism; provide the basis for studying the impact of past climate change on vegetation on the Tibetan Plateau; and provide boundary conditions for climate simulation.
QIN Feng , ZHAO Yan, CAO Xianyong
Dating data of debris flow and dammed lake sediments in complex mountainous areas from 2019 to 2021. The data collection sites are complex mountainous areas prone to debris flow in the eastern and southern edges of the Qinghai Tibet Plateau. The experimental analysis is mainly completed in the salt lake chemical analysis and testing center of Qinghai Salt Lake Research Institute of Chinese Academy of Sciences and the analysis and testing center of Chengdu Mountain Institute of Chinese Academy of Sciences. The instruments used include RIS ø TL / OSL – Da – 20 automatic luminescence instrument, etc. The age data set of debris flow sediments in typical complex mountainous areas is established, the formation age of debris flow sediments in complex mountainous areas is quantitatively studied, and the ancient debris flow disaster activity history in complex mountainous areas is determined.
HU Guisheng
This is Tibet Plateau (TP) annual near-surface temperature dataset during the past millennium with a 2° spatial resolution, which is produced using the paleoclimate data assimilation approach with EnSRF method, MPI-ESM-P model and 396 multi-proxies from the PAGES2k Consoritum. This dataset agrees well with several observational temperature datasets during the instrumental period, and has a similar level of reliability as the Twentieth Century Reanalysis which assimilates surface pressure observations. In addition, the dataset shows a high level of agreement with previous proxy-based reconstructions (average correlation of annual mean TP temperatures is r = 0.61). The dataset can be used to study the temperature variability over the TP and some regions of the TP during the past millennium (1000-2000 AD).
FANG Miao
Holding particular biological resources, the Tibetan Plateau is a unique geologic-geographic-biotic interactively unite and hence play an important role in the global biodiversity domain. The Tibetan Plateau has undergone vigorous environmental changes since the Cenozoic, and played roles switching from “a paradise of tropical animals and plants” to “the cradle of Ice Age mammalian fauna”. Recent significant paleontological discoveries have refined a big picture of the evolutionary history of biodiversity on that plateau against the backdrop of major environmental changes, and paved the way for the assessment of its far-reaching impact upon the biota around the plateau and even in more remote regions. Here, based on the newly reported fossils from the Tibetan Plateau which include diverse animals and plants, we present a general review of the changing biodiversity on the Tibetan Plateau and its influence in a global scale. We define the Tibetan Plateau as a junction station of the history of modern biodiversity, whose performance can be categorized in the following three patterns: (1) Local origination of endemism; (2) Local origination and “Out of Tibet”; (3) Intercontinental dispersal via Tibet. The first pattern is exemplified by the snow carps, the major component of the freshwater fish fauna on the plateau, whose temporal distribution pattern of the fossil schizothoracines approximately mirrors the spatial distribution pattern of their living counterparts. Through ascent with modification, their history reflects the biological responses to the stepwise uplift of the Tibetan Plateau. The second pattern is represented by the dispersal history of some mammals since the Pliocene and some plants. The ancestors of some Ice Age mammals, e.g., the wholly rhino, Arctic fox, and argali sheep first originated and evolved in the uplifted and frozen Tibet during the liocene, and then migrated toward the Arctic regions or even the North American continent at beginning of the Ice Age; the ancestor of pantherines (big cats) first rose in Tibetan Plateau during the Pliocene, followed by the disperse of its descendants to other parts of Asia, Africa, North and South America to play as top predators of the local ecosystems. The early members of some plants, e.g., Elaeagnaceae appeared in Tibet during the Late Eocene and then dispersed and were widely distributed to other regions. The last pattern is typified by the history of the tree of heaven (Ailanthus) and climbing perch. Ailanthus originated in the Indian subcontinent, then colonized into Tibet after the Indian-Asian plate collision, and dispersed therefrom to East Asia, Europe and even North America. The climbing perches among freshwater fishes probably rose in Southeast Asia during the Middle Eocene, dispersed to Tibet and then migrated into Africa via the docked India. These cases highlight the role of Tibet, which was involved in the continental collision, in the ntercontinental biotic interchanges. The three evolutionary patterns
SHI Jingsong
As one of the largest land mammals, the origin and evolution of the giant rhino Paraceratherium bugtiense in Pakistan have been unclear. We report a new species Paraceratherium linxiaense sp. nov. from northwestern China with an age of 26.5 Ma. Morphology and phylogeny reveal that P. linxiaense is the highly derived species of the genus Paraceratherium, and its clade with P. lepidum has a tight relationship to P. bugtiense. Based on the paleogeographical literature, P. bugtiense represents a range expansion of Paraceratherium from Central Asia via the Tibetan region. By the late Oligocene, P. lepidum and P. linxiaense were found in the north side of the Tibetan Plateau. The Tibetan region likely hosted some areas with low elevation, possibly under 2000 m during Oligocene, and the lineage of giant rhinos could have dispersed freely along the eastern coast of the Tethys Ocean and perhaps through some lowlands of this region.
DENG Tao
The present data are chronological and palynological data from the Luanhaizi Lake core in the Menyuan Basin, northeastern Tibetan Plateau. We used the AMS14C method to test nine dated samples from the LHZ18 core. Bulk samples were collected from plant remains and organic-rich horizons from the core LHZ18 for accelerator mass spectrometry (AMS)14C dating. Samples were measured at Beta Labs in the USA and Lanzhou University.Pollen analysis was completed at the Key Laboratory of Western China’s Environment Systems,Ministry of Education, Lanzhou University, with 140 stratigraphic pollen samples and 10 topsoil pollen samples. Spore pollen identification statistics were carried out under a light microscope.The pollen results mainly include the number of grains of trees, shrubs, herbs and aquatic plants.
HUANG Xiaozhong, ZHANG Jun, WANG Tao
1) Data content: the data are the ancient DNA data generated by studying the cultural layer of Klu lding site in Nyingchi region, Tibetan Plateau, including the hiseqx metagenomics data of 10 ancient DNA samples from 4 layers. It can be used to preliminarily analyze the changes of species composition recorded by ancient DNA in the sediments, and reveal the process of local agricultural development. 2) Data source and processing method: the research group has its ownership. the data were obtained by using pair-end library building and Illumina hiseqx sequencing platform. 3) Data quality: 20.3 MB, Q30 > 85%. 4) Application: The data will be used to explore the potential of the ancient DNA from archaeological sediments in revealing the development of ancient agriculture on the Tibetan Plateau.
YANG Xiaoyan
Collision between the Indian and Eurasian plates produced concomitant uplift of the Tibetan Plateau and its basin-ridge geomorphological systems. Surface relief of the Tibetan Plateau has significant dynamic and thermal effects on atmospheric circulation and on regional and global climate. It has been considered as one of the key drivers for the formation of the Asian monsoon, enhanced erosion and weathering, global decreased CO2 during the Cenozoic. Finally, this uplift caused global cooling in the Cenozoic. However, at present, the driving mechanisms of these processes still remain controversies and have not been clearly confirmed by records of chemical weathering from the Tibetan Plateau. This dataset includes major elemental compositions of the Fenghuoshan Group (thick of ~4500 m) from the Hoh Xil Basin which has been dated back to the Late Cretaceous-Eocence. Element was measured in the Institute of Geology and Geophysics, Chinese Academy of Sciences using XRF-1500. The resconstructed Paleogene chemical weathering sequences allow us to constrain the trends of chemical weathering history of the studied area. We found that intensity of chemical weathering is well correlated with global temperature change. These results provide further data supprot for discussing the dynamic mechanisms and links among the Paleogene chemical weathering in the Hoh Xil Basin, uplift of the Tibetan Plateau, and global change.
JIN Chunsheng
A 170-cm-long sediment core was extracted from Lake Xingxinghai at a water depth of 9 m (34°50.44′N, 98°06.34′E) in January 2010 using Austria’s UWITEC platform coring equipment. Both the 210Pb/137Cs and AMS 14C (11 dating data) approaches were applicated into the age-depth model establishment using Bayesian age–depth modelling by the “Bacon” software, and the age-depth model indicates the core covers the past 7400 years. The core was sliced at 0.5-cm interval upper 3 cm and 1-cm interval for other part, finally we got 173 samples totally. Pollen grains were extracted using a procedure including the treatments with 10 % HCl, 10 % NaOH and 40 % HF, followed by a 7-μm mesh sieving and acetolysis treatment (9:1 mixture of acetic anhydride and sulfuric acid). Pollen grains were identified and counted under optical microscope, and at least 300 terrestrial pollen grains were counted for each sample. The mean temporal resolution of pollen spectra is ca. 40 year/sample. The pollen spectra include forty-eight pollen taxa, are dominated by herbaceous taxa (range: 88.5~98.9%; mean: 93.4%), such as Artemisia (up to 54.4%), Cyperaceae (up to 50.1%), Poaceae (up to 48.8%), Chenopodiaceae (up to 17.9%) and Asteraceae (up to 8.5%). Abundance of arboreal pollen is less than 5% through out the core, mainly comprised of Pinus (maximum: 4.9%; mean:1.2%) and Betula (maximum: 3.0%; mean: 0.7%). The pollen dataset includes pollen percentages for the 43 terrestrial pollen taxa together with their depths and ages, and the dataset is valuable to employed in past vegetation and climate reconstructions.
TIAN Fang, CAO Xianyong
1) The data includes 40 14C dating data of multiple Lake cores. The age control of most lake sediment cores is completed by radiocarbon isotope (14C) dating. The data sheet includes Lake core sample number, laboratory sample number, sample depth, 14C results, dating error and corrected results. The chronological framework of Lake cores is the basis for paleoclimate reconstruction. 2) All 14C data are completed in beta analytical Inc, and the laboratory operation is in strict accordance with the standard process. 3) The quality of the 40 dating data is good. 4) The data have been published, which provides basic data for the study of paleoclimate in the Qinghai Tibet Plateau.
HOU Juzhi
The most primitive Elasmotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of northern China, The origin of Elasmotherium has been a puzzle for many years. Herein, we report the earliest representative of Elasmotherium, based on a Late Miocene skull from Dingbian County in Shaanxi, northwestern China. The skull bears a unique mosaic of primitive and derived features different from all hitherto known elasmotheres, hence forth demarcated as holotype of Elasmotherium primigenium sp. nov. Dental characters of E. primigenium are more primitive than any other known species of lasmotherium, e.g. relatively incipient enamel folding, fairly weak lingual groove on the base of the protocone, relatively weaker crista, small and closed posterior valley and straight ectoloph. E. primigenium is evidently more primitive than all the known species of Elasmotherium, yet appreciably more derived than Sinotherium, thereby marking an important transitional species between Sinotherium and further species of the genus Elasmotherium.
SUN Danhui, DENG Tao
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn