Snow cover is an important component of the cryosphere and an indispensable variable in the scientific research of global change and Earth system. The distribution range and phenological information of snow cover are important indicators to measure the variation characteristics of snow cover, and also important parameters for snow melting runoff simulation in the hydrological model of cold regions. The High Mountain Asia is the source of many international rivers, and also the hot spot of global climate change research; The ecological and environmental problems caused by the change of ice and snow in the region, such as the reduction of water resources, the increase of extreme weather events, and the frequent occurrence of disasters, have attracted extensive attention from all countries. Therefore, it is very important for climate change research, water resources management, disaster early warning and prevention to accurately obtain long-term snow distribution and snow phenology data in High Mountain Asia . The daily cloudless MODIS normalized snow cover index (NDSI) product (2000-2021500 m) in the High Mountain Asia is based on the MODIS daily snow cover product (including Terra Morning Star data product MOD10A1 and Aqua Afternoon Star data product MYD10A1, C6 versions), and is processed by the same day afternoon star data fusion and cubic spline interpolation cloud removal algorithm; Among them, when there was only Morningstar data product MOD10A1 from 2000 to 2002, the cubic spline interpolation algorithm was directly used for cloud removal. The snow cover phenological data set for hydrological years 2002-2020 is prepared based on cloudless MODIS NDSI products in hydrological years, including three parameters: snow onset date (SOD), snow end date (SED) and snow duration days (SDD). This data set has reliable accuracy.
TANG Zhiguang , DENG Gang
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn