Glacier surface albedo is a key parameter in the process of glacier mass and energy balance. The data include annual mean glacier surface albedo and annual minimum glacier surface albedo for each year of the 2000-2020 ablation period (June-August) in the High Mountain Asia. Based on the MODIS 500m resolution daily snow albedo products (including MOD10A1 and MYD10A1), firstly, mean-synthesis was applied to the morning star data MOD10A1 and afternoon star data MYD10A1, followed by interpolation and null-filling using mean-filtering for data within a ±2 day window, and finally based on the minimum and mean methods to obtain the annual mean albedo and annual minimum albedo for glaciers in High Mountain Asia were obtained based on the minimum and mean methods. Compared to the original data, the accuracy and coverage of the data are greatly improved. It can provide ice surface albedo input data for studying the relationship between glacier albedo and matss balance and for glacier models.
XIAO Yao
This dataset includes the glacier elevation change data in the High Mountain Asia (HMA) region from 2018 to 2020 derived from Ice, Cloud and land Elevation Satellite (ICESat-2) data. The glacial elevation changes in the High Mountain Asia region were calculated using ICESat-2 data (2018-2020) and SRTM DEM data in 2000, taking into account the inhomogeneity of glacier changes and area distribution at different elevations and slopes (weighted average of glacier area of elevation and slope bins in 1°×1° grid ). The dataset can provide the annual change information of glacier elevation in the High Mountain Asia region from 2018 to 2020 relative to 2000. These data can be used for studies of climate change in the High Mountain Asia.
SHEN Cong , JIA Li
This dataset includes the glacier elevation change data in the High Mountain Asia (HMA) region from 2003 to 2008 derived from Ice, Cloud and land Elevation Satellite (ICESat-1) data. The glacial elevation changes in the High Mountain Asia region were calculated using ICESat-1 data (2003-2008) and SRTM DEM data in 2000, taking into account the inhomogeneity of glacier changes and area distribution at different elevations and slopes (weighted average of glacier area of elevation and slope bins in 1°×1° grid ). The dataset can provide the annual change information of glacier elevation in the High Mountain Asia region from 2003 to 2008 relative to 2000. These data can be used for studies of climate change in the High Mountain Asia.
SHEN Cong , JIA Li
This data is the simulated data of glacier distribution in the alpine region of Asia since the last glacial maximum, It includes the annual resolution glacier area change sequence of typical regions (High mountain Asia, Tianshan Mountains, Himalayas and Pamir Plateau) and typical periods (LGM (20000 ~ 19000ka), HS1 (17000 ~ 16000ka), BA (~ 14900 ~ 14350ka), yd (12900 ~ 12000ka), eh (9500 ~ 8500ka), MH (6500 ~ 5500ka), LH (3500 ~ 2500ka) and modern (1951 ~ 1990)) 1 km resolution glacier distribution in High Mountain Asia. This data are created by taking the trace full forcing simulation based on ccsm3 climate model as the external forcing field to drive the 1 km resolution PISM ice sheet model. This data can be used to study the changes of glacier distribution in the alpine region of Asia since the last glacial maximum and its impact on environmental and climatic factors such as lake water level, runoff and landform.
YAN Qing
Radar penetration correction is essential for accurately estimating glacier mass balance when using the geodetic methods based on the radar-derived Digital Elevation Model (DEM). Due to heterogeneous snow distribution and snowpack properties, the radar penetration depth varies by region and is basically dependent on the altitudes. Therefore, this data set gives the result of the penetration depth difference of SRTM C/X-band radar on 1°×1° grid of High Mountain Asia Glaciers. The data set contains 214 1°×1° grids SRTM X-band and C-band penetration depth difference in HMA, and a linear fitting expression for each grid. According to the geodetic method, the 30 m SRTM X-band and C-band DEM are used to obtain the results of the penetration depth difference between the SRTM X-band and C-band of the 1°×1° high grid in HMA, and obtain the relationship between the SRTM X-C-band penetration depth difference and the elevation in the glacier area (for specific methods, please refer to references). The data is stored in excel files. Observational data can provide important basic data for studying the glacier mass balance in HMA, and can be used by scientific researchers studying climate, hydrology and glaciers.
JIANG Liming JIANG Liming JIANG Liming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn