The Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model datasets prepared for the sixth phase of the Coupled Model Intercomparison Project (CMIP6) Global Monsoons Model Intercomparison Project (GMMIP) Tier-1 and Tier-3 experiments are introduced in this paper, and the model descriptions, experimental design and model outputs are demonstrated. There are three simulations in Tier-1, with different initial states, and five simulations in Tier-3, with different topographies or surface thermal status. Specifically, Tier-3 contains four orographic perturbation experiments that remove the Tibetan–Iranian Plateau, East African and Arabian Peninsula highlands, Sierra Madre, and Andes, and one thermal perturbation experiment that removes the surface sensible heating over the Tibetan–Iranian Plateau and surrounding regions at altitudes above 500 m. These datasets will contribute to CMIP6’s value as a benchmark to evaluate the importance of long-term and short-term trends of the sea surface temperature in monsoon circulations and precipitation, and to a better understanding of the orographic impact on the global monsoon system over highlands.
HE Bian
Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.
HE Bian
CAS FGOALS-f3-H, with a 0.25° horizontal resolution, and CAS FGOALS-f3-L, with a 1° horizontal resolution, were forced by the standard external conditions, and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of ‘highresSST-present’ and ‘highresSST-future’, respectively. The model outputs contain multiple time scales including the required hourly mean, three-hourly mean, six-hourly transient, daily mean, and monthly mean datasets.
BAO Qing
Meteorological elements of the dataset include the near-surface land-air exchange parameters, such as downward/upward longwave/shortwave radiation flux, momentum flux, sensible heat flux, latent heat flux, etc. In addition, the vertical distributions of 3-dimensional wind, temperature, humidity, and pressure from the surface to the tropopause are also included. Independent evaluations were conducted for the dataset by comparison between the observational data and the most recent ERA5 reanalysis data. The results demonstrate the accuracy and superiority of this dataset against reanalysis data, which provides great potential for future climate change research.
LI Fei, Ma Shupo, ZHU Jinhuan, ZOU Han , LI Peng , ZHOU Libo
The Tibetan Plateau Subregional Dynamical Downscaling Dataset-Standard Year (TPSDD-Standard) is a high spatial-temporal resolution gridded dataset for the study of land-air exchange processes and lower atmospheric structure over the entire Tibetan Plateau, taking into account the climatic characteristics of each subregion of the Tibetan Plateau. Based on the 500 hPa multi-year average of the geopotential height field over the Tibetan Plateau, the year (2014) with the largest pattern correlation coefficient with this geopotential height field is selected as the standard year, which means that it can roughly reflect the multi-year average status of the atmosphere over the Tibetan Plateau. The temporal resolution of this data is 1 hour and the spatial resolution is 5 km. Meteorological elements of the dataset include near-surface land-air exchange parameters such as downward/upward long-wave/short-wave radiation fluxes, sensible heat fluxes, latent heat fluxes, etc. In addition, the 3-dimensional vertical distribution of wind, temperature, humidity, and pressure from the surface to the top of the troposphere is also included. The dataset was independently evaluated by comparing the observed data with the latest ERA5 reanalysis data. The results demonstrate the accuracy and superiority of the dataset, which offers great potential for future climate change studies.
LI Fei, Ma Shupo, ZHU Jinhuan, ZHOU Libo , LI Peng , ZOU Han
Wind speed data is widely used in many sciences, management, and policy fields to assess renewable energy potential, address wind hazards, investigate biological phenomena, and explore climate change/variability, among other applications. The challenge is obtaining complete and accurate wind datasets, as observations are limited in distribution. Global-scale weather stations suffer from spatial and temporal discontinuities that limit their utility. While reanalysis products and climate model simulations achieve data continuity, they often fail to reproduce significant wind speed trends because few of them assimilate in-situ wind observations on land. Data interpolation helps fill gaps, but the high variability of wind speed data, combined with a low distribution of observations worldwide, prevents standard statistical interpolation methods such as kriging or principal component analysis from being accurate for areas with sparse data. As a result, wind speed data has been the bottleneck in related studies. Here, based on the partial convolutional neural network, we reconstructed the global near-surface wind speed data during 1973-2021 by assimilating simulation outputs from 34 climate models and the HadISD dataset, which the Met Office Hadley Center creates. Our dataset has a spatial resolution of 1.25°×2.5° and containers observed wind speed trends.
ZHOU Lihong , ZENG Zhenzhong , JIANG Xin
The reconstruction of sunshine hours can better reflect the long-term change trend of surface solar radiation, but only the station data. Therefore, in order to obtain high-resolution grid point data and ensure its accuracy in long-term changes, it is necessary to fuse a variety of surface solar radiation related data. Using the geographic weighted regression (GWR) method, the MODIS 0.1 ° resolution cloud and aerosol retrieval and the surface sunshine hours are combined to reconstruct the surface solar radiation station data. By adding the combination judgment of adjacent point schemes, the accuracy of downscaling results of geographical weighted regression is effectively improved, and the multi-year average value and long-term trend of China are basically consistent with the observation and satellite remote sensing inversion results. Using geographic weighted regression and other methods, the surface wind speed and relative humidity data of 0.1 degree grid are generated; The improved Penman formula is used to calculate the land surface evapotranspiration data.
WANG Kaicun
As a huge elevated surface and atmospheric heat source in spring and summer, the Qinghai Tibet Plateau (TP) has an important impact on regional and global climate and climate. In order to explore the thermal forcing effect of TP, the sensitivity test data set of sensible heat anomaly on the Qinghai Tibet Plateau was prepared. This data includes three groups of sensitivity tests: (1) in the fully coupled model cesm1.2.0, the plateau sensible heat is stronger CGCM from March to may in spring_ lar_ mon_ 3-12-2.nc and plateau thermal sensitivity are weak (CGCM)_ sma_ mon_ 3-12-2. Sensitivity test of NC; (2) In the single general circulation model cam4.0, the sensible heat of the plateau is stronger in spring (March may)_ lar_ Mon 3-8.nc and low sensible heat cam_ sma_ Mon3-8.nc sensitivity test. Including: 3D wind, potential height, air temperature, surface temperature, specific humidity, sensible heat flux, latent heat flux, precipitation and other conventional variables Space scope: global simulation results
DUAN Anmin
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
The high-resolution atmosphere-hydrologic simulation dataset over Tibetan Plateau is prepared by WRFv4.1.1 model with grids of 191 * 355 and spatial resolution of 9 km, and a spatial range covering the entire plateau. The main physics schemes are configured with Thompson microphysics scheme, the rapid radiative transfer model (RRTM), and the Dudhia scheme for longwave and shortwave radiative flux calculations, respectively, the Mellor-Yamada-Janjic (MYJ) TKE scheme for the planetary boundary layer and the Unified Noah Land Surface Model. The time resolution is 3h and the time span is 2000-2010. Variables include: precipitation (Rain), temperature (T2) and water vapor (Q2) at 2m height on the ground, surface skin temperature (TSK), ground pressure (PSFC), zonal component (U10) and meridional component (V10) at 10m heigh on the ground, downward long-wave flux (GLW) and downward short-wave flux (SWDOWN) at surface, ground heat flux (GRDFLX), sensible heat flux (HFX), latent heat flux (LH), surface runoff (SFROFF) and underground runoff (UDROFF). The data can effectively support the study of regional climate characteristics, climate change and its impact over the Tibet Plateau, which will provide scientific basis for the sustainable development of the TP under the background of climate change.
MENG Xianhong, MA Yuanyuan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from January 1 to October 9 in 2021. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from January 1 to October 13, 2021. The site (100°6'3.62"E, 37°31'15.67") was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from Janurary 1 to October 13 in 2021. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.
Li Xiaoyan
The distribution data of available wind energy resources with 1km resolution in the Qinghai Tibet Plateau is based on the multi-year average wind speed in the Qinghai Tibet Plateau obtained by numerical simulation, and considering the constraints and restrictions of terrain, water body, urban and other land use on wind energy development, the comprehensive wind energy resource levels are very rich, rich, relatively rich and general. Set the land availability according to the terrain slope and land use type, deduct the 3km range around the town, divide the land availability into 5 intervals from 0 to 1 according to the interval of 0.2, and then divide the annual average wind speed into 4 intervals. The classification of wind energy resources is obtained through the combination of land availability and wind speed. The data are mainly used for detailed survey of wind energy resources and macro site selection of wind farms.
ZHU Rong, SUN Chaoyang
Based on the regional environment integrated system model developed by the Key Laboratory of regional climate and environment, Chinese Academy of Sciences, a regional climate model for convective analysis of the Qinghai Tibet Plateau is established. The grid center of the model simulation area is located at (34n, 100e), the horizontal resolution is 3km, and the number of simulation grid points of the model is 465 (longitude) x 375 (latitude). The vertical direction is 27 floors. The air pressure at the top of the model layer is 50 HPA. The buffer zone consists of 15 grids, the integration time is one year in 2010, and the horizontal resolution of the European medium range weather forecast center is 0.25x0 25. The reanalysis data of era5 with a time interval of 6 hours is used as the driving field to generate the driving data of surface meteorological elements on the Qinghai Tibet Plateau in 2010 with a horizontal resolution of 3 km * 3 km and a time interval of 1 hour After dynamic downscaling by using the convection analysis regional climate model of the Qinghai Tibet Plateau, the bottleneck problem of the lack of meteorological data sets with long-time series and high spatial-temporal resolution in the Qinghai Tibet Plateau and other regions is solved, so as to provide a solid and reliable scientific data foundation for the future change of climate and environment and the construction of ecological security barrier in the Qinghai Tibet Plateau.
XIONG Zhe
Tajikistan West Pamir Glacier Meteorological Station (38°3′15″N, 72°16′52″E, 3730m), the station is the Urumqi Desert Meteorological Institute of the China Meteorological Administration and the Tajikistan National Academy of Sciences for Water Issues, Water Energy and Ecology The Institute and the Tajikistan Hydrological and Meteorological Service are jointly constructed. Observation data includes hourly meteorological elements (average wind direction (°), average wind speed (m/s), wind direction at maximum wind speed (°), maximum wind speed (m/s), average temperature (°C), maximum Air temperature (°C), minimum air temperature (°C), average relative humidity (%), minimum relative humidity (%), average atmospheric pressure (hPa), maximum atmospheric pressure (hPa), minimum atmospheric pressure (hPa)). The data period is from December 10, 2020 to October 13, 2021 Meteorological observation data can provide important basic data for studying the relationship between climate change, glaciers and water resources in the West Pamir Mountains, and provide important data for the economic construction of the lower reaches of the Amu Darya River Basin in Tajikistan.
HUO Wen
This data set integrates the radiosonde observation data of the stations of Everest, Nyingchi and Namuco in 2014 (the radiosonde observation periods are 08:00, 14:00 and 20:00 in June, August and November) and the Shiquanhe station (the radiosonde observation periods are 02:00, 08:00, 14:00 and 20:00 in May, July and October) in the three-dimensional comprehensive observation test of "Earth atmosphere interaction and climate effect" of the second Tibetan Plateau scientific research in 2019. This data is the gradient observation data composed of potential temperature, specific humidity, wind speed, wind direction and relative height. The data acquisition frequency is 2S and the use time is Beijing. The naming rule of data integrity file is: year + element xlsx。
LI Maoshan, MA Yaoming, HU Zeyong, CHEN Xuelong, SUN Fanglei, MA Weiqiang*
This data set records the meteorological data in the observation field of Ngari Station for Desert Environment Observation and Research (33 ° 23.42 ′ N, 79 ° 42.18 ′ E, 4270 m asl) from 2019 to 2020, with a time resolution of days. It includes the following basic parameters: air temperature (℃), relative humidity (%), wind speed (m/s), wind direction (°), air pressure (hPa), precipitation (mm), water vapor pressure (kPa), downward short wave radiation (W/m^2), Upward short wave radiation (W/m^2), Downward long wave radiation(W/m^2), Upward long wave radiation(W/m^2), Net radiation(W/m^2), Surface albedo (%), soil temperature (℃), soil water content (%). Sensor model of observation instrument: atmospheric temperature and humidity: HMP45C; Precipitation: t200-b; Wind speed and direction: Vaisala 05013; Net radiation: Kipp Zonen NR01; Air pressure: Vaisala PTB210; Soil temperature: 109 temperature probe; Soil moisture content: CS616. Data collector: CR1000. The time resolution of the original data is 30 min. The data can be used by scientific researchers engaged in meteorology, atmospheric environment or ecology.
ZHAO Huabiao
This meteorological data is the basic meteorological data of air temperature, relative humidity, wind speed, precipitation, air pressure, radiation, soil temperature and humidity observed in the observation site (86.56 ° e, 28.21 ° n, 4276m) of the comprehensive observation and research station of atmosphere and environment of Qomolangma, Chinese Academy of Sciences from 2019 to 2020. Precipitation is the daily cumulative value. All data are observed and collected in strict accordance with the instrument operation specifications, and some obvious error data are eliminated when processing and generating data The data can be used by students and scientific researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from Qomolangma station for atmospheric and environmental observation and research, Chinese Academy of Sciences (QOMS / CAS))
XI Zhenhua
The data were collected from the sample plot of Haibei Alpine Meadow Ecosystem Research Station (101°19′E,37°36′N,3250m above sea level), which is located in the east section of Lenglongling, the North Branch of Qilian Mountain in the northeast corner of Qinghai Tibet Plateau. Alpine meadow is the main vegetation type in this area. The data recorded the light, air temperature and humidity, wind temperature and wind speed above the alpine plant canopy. The radiation intensity above the alpine plant canopy was recorded by LI-190R photosynthetic effective radiation sensor (LI-COR, Lincoln NE, USA) and LR8515 data collector (Hioki E. E. Co., Nagano, Japan), and the recording interval was once per second. S580-EX temperature and humidity recorder (Shenzhen Huatu) and universal anemometer are used (Beijing Tianjianhuayi) record the daily dynamics of air temperature and humidity, wind temperature and wind speed every three seconds. The recording time is from 10:00 on July 13 to 21:00 on August 17, Beijing time. Due to the need to use USB storage time and replace the battery every day, 3-5min of data is missing every day, and the missing time period is not fixed. At present, the data has not been published. Through research on the data The data can further explore the microenvironment of alpine plant leaves and its possible impact on leaf physiological response.
TANG Yanhong, ZHENG Tianyu
The Holocene single greenhouse gas concentration change simulation results (11.5-0 ka) data set is based on the Earth system model CESM model (horizontal resolution: about 2° for the atmosphere and land surface module; about 1° for the ocean and sea ice module), carry out the Holocene transient simulation test considering the change of greenhouse gas concentration. The spatial resolution is 2°; the spatial range: North: 90°N, South: 90°S, West: -180°, East: 180°; the regional range is global; the time range is Holocene. The simulation results can be used to study Holocene changes of westerly-monsoon in Eurasia under the influence of individual greenhouse gas concentration changes.
TIAN Zhiping, ZHANG Ran ZHANG Ran
1) Data content: the average zonal wind speed of 200 hPa and 850 hPa (reflecting the high and low-level westerly wind) and meridional wind speed of 850 hPa (reflecting the monsoon circulation) during the past millennium; 2) Data source: monthly data of the third phase of the international paleoclimate simulation and comparison program, processing method: multi-mode equal weight arithmetic average, climate average, 3) data application: used for the study of paleoclimate change and dynamic mechanism.
YAN Qing, JIANG Nanxuan, WANG Huijun
1) Data content (including elements and significance): 19 stations of Alpine network (Southeast Tibet station, Namuco station, Everest station, mustage station, Ali station, Golmud station, Tianshan station, Qilian mountain station, Ruoergai station (2 points in total, Northwest Institute and Chengdu Institute of Biology), Yulong Snow Mountain station and Naqu station (including stations, Qinghai Tibet Institute, Northwest Institute and Geography Institute), Haibei Station, Sanjiangyuan station, Shenza station,, Lhasa station and Qinghai Lake Station) meteorological observation data set of Qinghai Tibet Plateau in 2020 (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and flux) 2) Data source and processing method: Excel format for field observation of 19 stations of Alpine network 3) Data quality description: Daily resolution of the station 4) Data application achievements and prospects: Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data. In addition, the data set is an update of the meteorological data of the surface environment and observation network in China's high and cold regions (2019).
ZHU Liping
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
This dataset contains the fluxes and meteorological data of Weishan (Gaoying) flux site of Tsinghua University from May 17, 2005 to September 26, 2006. The site (116.0542° E, 36.6487° N, 30 m above sea level) was built on March 18, 2005 and is located in Xiaozhuang Town, Chiping District, Liaocheng City, Shandong Province. It belongs to Weishan Irrigation District along the lower Yellow River. The local climate is characterized as temperate monsoons, with an average annual temperature of 13.8 ℃, an average annual precipitation of 553mm, most of which occurs between June and October, and an average annual potential evaporation of 1950mm. The soil type is silt loam. For the soil of the top 5 cm, the average saturated soil water content, field capacity and wilting point in volumetric values are 0.43, 0.33 and 0.10 m3m-3, respectively. The height of the flux tower is 10m, and the area within about 1 km radius around the flux tower is largely homogeneous winter wheat-summer maize rotation cropland. The winter wheat is generally sown in mid-October and harvested in early June of the following year, while the summer maize is usually planted directly into the stubbles of wheat at the same location immediately after the harvest of wheat and is harvested in late September to early October. See the file named “Supplementary data_WeishanGaoying20052006.xlsx” for specific sowing, harvesting and irrigation dates. The surface flux data is measured by the eddy covariance system, which is composed of a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT, USA) and an open-path infrared gas analyzer (IRGA) (LI-7500, LI-COR, Inc., Lincoln, NE, USA) with an installation height of 3.7m. The 30-minute net ecosystem carbon exchange (NEE), latent heat flux (LE) and sensible heat flux (H) data were obtained after the raw 10Hz data were processed by Eddypro software. The preprocessing steps included despiking, double coordinate rotation, 30-min block averaging, time lag compensation, spectral corrections, the Webb-Pearman-Leuning (WPL) density correction, a quality check using the “0-1-2 system”. Then the 30-min data were screened as follows: (1) remove bad quality fluxes with quality flag 2; (2) limit H and LE to - 200 ~ 500 W m-2 and - 200 ~ 800 W m-2, respectively; (3) the data during the precipitation events were excluded. Then, REddyproc software is used to filter the data under low turbulence mixing conditions (i.e. filter the flux data according to the friction wind speed u*), fill the gaps in the time series, and then the NEE was divided into ecosystem respiration (Reco) and gross primary production (GPP) by the nighttime partitioning method. The published dataset includes: year, month, day, time, atmospheric pressure (P), infrared surface temperature (Tsurf), wind speed (Ws), wind direction (Wd), air temperature (Tair) and relative humidity (rH) at 2m, downward short wave radiation (Rsd), upward short wave radiation (Rsu), downward long wave radiation (Rld), upward long wave radiation (Rlu), Net radiation (Rn), incident photosynthetically active radiation (PAR_dn), reflected photosynthetically active radiation (PAR_up), precipitation (precip), groundwater level (GW), 5cm/10cm/20cm/40cm/80cm/160cm soil water content (soil_VW_ 5cm / 10cm / 20cm / 40cm / 80cm / 160cm) and soil temperature (soil_T_5cm / 10cm / 20cm / 40cm / 80cm / 160cm), soil heat flux at 5cm depth (soil_ G) , raw data of net ecosystem carbon exchange (NEE_raw), raw data of latent heat flux (LE_raw), raw data of sensible heat flux (H_raw), net ecosystem carbon exchange after gap filling (NEE_ f) , latent heat flux after gap filling (LE_f), sensible heat flux after gap filling (H_f), ecosystem respiration imputation (Reco_f), gross primary productivity (GPP_f). The data are stored in .xlsx format at 30-minute intervals. Null values in the dataset are represented by NA. Please refer to Lei and Yang (2010a, 2010b) for detailed information of this site and the observation instruments.
LEI Huimin
The Holocene single orbit parameter change simulation results (2019-2020) data set uses the earth system model cesm model (horizontal resolution: about 2 ° for the atmosphere and land surface module and about 1 ° for the ocean and sea ice module) to carry out the Holocene transient simulation test considering the change of earth orbit parameters. The spatial resolution is 2 °; Spatial range: North: 50 ° n, South: 20 ° n, West: 60 ° e, East: 130 ° E; Regional scope: Eurasia; The time range is Holocene. The simulation results can be used to analyze the changes of westerly monsoon in Eurasia under the influence of individual orbital parameters in Holocene.
ZHANG Ran ZHANG Ran
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 1 to November 2, 2020. The site (102.833E, 36.681N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2912 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4 m, towards south),infrared temperature sensors (2 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation;-0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m and Ta_8 m; RH_4 m and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5 cm, Gs_10 cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential (SWP_5cm,SWP_10cm)(kpa), soil conductivity (EC_5cm,EC_10cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from Janurary 1 to December 31 in 2020. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.
Li Xiaoyan
The monthly mean wind speed grid data of 3 km resolution over the Qinghai Tibet Plateau is based on the meteorological element database developed by the National Climate Center for Mesoscale Numerical Simulation of long-term time series, with a horizontal resolution of 3 km × 3 km, time resolution 1 hour, time length 1995 ⁓ 2016. The establishment of the database adopts the double nested numerical simulation method of WRF mesoscale model, with the outer grid distance of 9 km, covering most of Eurasia; There are four internal weight grids with a grid distance of 3 km, covering the land and sea areas of China, and the fourth calculation area covers the Qinghai Tibet Plateau (Fig. 1). The top height of WRF model is 10 HPA, with 36 layers in the vertical direction, and 9 layers from the ground to the height of 200 m. The physical process parameterization schemes include Thompson (outer heavy grid) and wsm6 (inner heavy grid) microphysical parameterization schemes; The k-f cumulus parameterization scheme is set in the outer grid, and the cumulus convection parameterization scheme is not set in the second grid; Rrtm (rapid radiative transfer model) long wave radiation parameterization scheme; Dudhia shortwave radiation parameterization scheme; Acm2 boundary layer parameterization scheme; Noah land surface parameterization scheme. The four-dimensional data assimilation technology is used in the numerical simulation, which integrates the grid reanalysis data of global atmospheric circulation model (cfsv2), oisst sea surface temperature data, and the time observation data of more than 2400 surface weather stations and 160 radiosonde weather stations in China. In 2009, China Meteorological Administration established a national wind energy resources professional observation network including 400 wind towers, including 329 70 m wind towers, 68 100 m wind towers and 3 120 m wind towers, which were gradually completed from 2008 to 2009, and mainly distributed in regions rich in wind energy resources in China. Based on the hourly wind direction and wind speed observation data of a complete year from January 2009 to December 2010 at the height of 70 m of the wind tower, the wind speed simulation results of the mesoscale WRF model (horizontal resolution 3 km) output in the same period were analyzed × 3 km), excluding the observation data integrity rate of less than 90% and the annual average wind speed of less than 3.8 m / s, there are 354 wind measuring towers actually used for error test, and the sample number of each tower is about 8700 hours. The results show that the relative error between the measured wind speed and the numerical simulation wind speed is less than 5% in 49% of the tower tests; The relative error is 5-10% for 28% of the wind towers; The relative error of 14.4% wind tower is 10-15%; The relative error of 5.6% wind tower is 15-20%; The relative error of 3% wind tower is more than 20%. The anemometer towers with large relative errors are mainly distributed in mountainous areas with complex inland terrain and coastal mountainous areas. In addition, the correlation coefficient of hourly wind speed comparison across the country is 0.6, and the correlation coefficient of average wind speed in 16 directions is 0.8, which is more than 99.9% of the statistical significance test. It shows that the temporal and spatial variation characteristics of numerical simulation wind speed are consistent with the variation of measured wind speed. There are no anemometer towers in Tibet. There are 13 anemometer towers in Qinghai Province. The relative errors of 6 towers are less than 5%, 3 towers are 5-10%, 3 towers are 10-15%, and 1 tower is 15-20%.
ZHU Rong, SUN Chaoyang
The 1km resolution wind energy resource data of Qinghai Tibet Plateau is developed by using the wind energy resource numerical simulation assessment system of China Meteorological Administration (weras / CMA), which includes typical terrain classification module, mesoscale model WRF and Calmet dynamic diagnosis model. Firstly, the typical days are randomly selected from the historical weather types for hourly wind speed simulation, and then the climate average distribution of wind energy resources is obtained according to the statistical analysis of the frequency of weather types. The data set includes wind speed and wind power density over the Qinghai Tibet Plateau. The data accuracy of wind speed is 0.01m/s, the data accuracy of wind power density is 0.01w/m2, and the vertical height of data is 100m. The data have been checked and corrected by the observation data of meteorological stations, and are mainly used for detailed investigation of wind energy resources and macro site selection of wind farms. This data is the output data of the national wind energy resources detailed survey and evaluation project from 2008 to 2012 (the project cost is 290 million yuan), and then becomes the basic data of wind energy resources related research. The Ministry of finance has no plan to invest in extending this data set in the near future.
ZHU Rong, SUN Chaoyang
The wind speed data in the lower boundary layer of Namco, Mt. Qomolangma and sun earth in Tibet Autonomous Region were obtained by using the acoustic radar instrument aq510. Aq510 acoustic radar is based on Doppler effect. There are three loudspeakers in aq510 acoustic radar, which emit sound waves into the air one after another, about once every five seconds. The sound waves emitted into the air will be reflected when encountering small temperature changes in the atmosphere, and the reflected sound waves will be received by the loudspeaker. Due to the Doppler effect, the frequency of reflected sound wave will change during the relative motion of sound wave and wind. The velocity and direction of wind can be calculated simultaneously by using the difference between the frequency of received (reflected) and transmitted sound wave. The data includes wind speed and direction with an interval of 5m between 40-200m, and the time resolution is 10 minutes. It is mainly used for the study of wind resource characteristics.
ZHU Rong, SUN Chaoyang
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.
ZHANG Dongqi
The data set recorded the average wind speed in major areas of Qinghai province from 1998 to 2020. The data are divided by monthly and annual mean. The data are collected from qinghai Statistical Yearbook released by Qinghai Provincial Bureau of Statistics. The data set contains 21 data tables, which are: average wind speed in major areas of Qinghai province in 1998, XLS, average wind speed in major areas of Qinghai Province in 1999, XLS, average wind speed in major areas of Qinghai Province in 2000, XLS, average wind speed in major areas of Qinghai Province in 2018, XLS, average wind speed in major areas of Qinghai Province in 2020, etc. The data table structure is the same. For example, the 1999 table had nine fields: Field 1: month Field 2: Xining Field 3: Safe Field 4: Door source Field 5: Chabcha Field 6: Colleagues Field 7: Taibu Field 8: Gu Gu Field 9: Delingha
Qinghai Provincial Bureau of Statistics
The West Pamir glacier meteorological station in Tajikistan (38 ° 3 ′ 15 ″ n, 72 ° 16 ′ 52 ″ e, 3730m) is jointly constructed by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The observational data include hourly meteorological elements (average wind direction (°), average internal wind speed (M / s), maximum wind speed (°), maximum wind speed (M / s), average temperature (℃), maximum temperature (℃), minimum temperature (℃), average relative humidity (%), minimum relative humidity (%), average atmospheric pressure (HPA), maximum atmospheric pressure (HPA), minimum atmospheric pressure (HPA)). The data period is from November 1, 2019 to November 30, 2020 Meteorological observation data can provide important basic data for the study of the relationship between climate change, glaciers and water resources in the West Pamir mountains, and provide important data for the economic construction of the lower reaches of the Amu Darya River Basin in Tajikistan.
HUO Wen, ZHANG Ruibo
Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
1) Data content: multi-model ensemble mean wind speed at 200 hPa and 850 hPa during the Last Glacial Maximum, mid-Holocene and pre-industrial period (reflecting high and low level westerlies), 850 hPa meridional and zonal winds (reflecting the East Asian monsoon circulation) and zonal mass streamfunction (reflecting Walker circulation); 2) Data sources: monthly data simulated by multiple climate models from the second and third stages of the international Paleoclimate Modelling Intercomparison Project; processing methods: multi-model equal weight arithmetic mean, monthly climate average; 3) Data application: used for the study of paleoclimate change and dynamic mechanism.
TIAN Zhiping, WANG Na
The China-Mongolia-Russia Economic Corridor is confronted with security problems related with global warming, mostly including the increasingly serious of degradation of permafrost and land desertification. On one hand, frozen soil degradation has caused frequent disasters such as debris flow, flood, ice and snow damage along the China-Mongolia-Russia transportation and pipeline, which will cause water and soil erosion followed by exposed pipes in frozen soil, in particular in summer. On the other hand, desertification will drive the ecological environment more vulnerable with the compound hazards of soil erosion and sandstorms occurring frequently. Therefore, this dataset will hopefully provide basic climate data for the research on the climate change and its impacts on permafrost and desertification for the China-Mongolia-Russia Economic Corridor. The original data is extracted from ERA5- Land surface climate reanalysis data (ERA5 – Land) (source: https://cds.climate.copernicus.eu). We adopted the inverse distance weight (IDW) method to interpolate the original data with the spatial resolution of 10 km. Based on this dataset, the spatial and temporal distribution pattern of climatic factors are outlined over the past 40 years for the corridor.
ZHANG Xueqin
When using the 3DVAR for data assimilation, it is necessary to use error covariance to determine the contribution of background field and observation. Among them, the background field error covariance depends not only on the atmospheric prediction model (such as resolution, parameterization scheme, etc.), but also on the simulation area. Based on the Weather Forecast and Research (WRF) model, this data is estimated by NMC method through the simulation of the Central Asian Great Lakes region (27 km horizontal resolution) in 2017. The variables include stream function, velocity potential function, temperature, relative humidity and surface pressure. This data can be applied to the study and application of data assimilation in the Central Asia Great Lakes region based on WRF model.
YAO Yao
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from October 23 to December 31, 2019. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The other data in addition to the four-component radiation data during January 1 to October 12 were missing because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from April 26 to December 31 in 2019. The site (100°14'8.99"E, 37°14'49.00"N) was located in the south of Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from April 28 to December 31, 2019. The site (100°6'3.62"E, 37°31'15.67"N) was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from September 3 in 2018 to December 31 in 2019. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019. The data for 2019-2021 was updated in 2021.
PAN Xiaoduo
This data is conventional and satellite data of six hour resolution for the Great Lakes region of Central Asia. The conventional data include the observation of ground stations and sounding stations in the Great Lakes region of Central Asia and its surrounding areas (China, Kazakhstan, Kyrgyzstan, Turkmenistan, Tajikistan, Uzbekistan, Afghanistan, Russia, Iran, Pakistan, India, etc.), and the observation elements include temperature, pressure, wind speed and humidity, with the average number of stations in each time It is about 600, and the interval between stations is between 10-100km; the satellite data comes from the cloud guide wind retrieved by polar orbiting satellites (NOAA series and MetOp Series). All the data are from the global telecommunication system (GTS), and the observation data with poor quality are eliminated through quality control. The data can be applied to the data assimilation of the Great Lakes region in Central Asia, and also to the numerical simulation of the Great Lakes region in Central Asia.
YAO Yao
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The basic meteorological data set of the China-Mongolia-Russia Economic Corridor meteorological station includes wind speed, wind direction, precipitation, temperature and snow depth. The time resolution is 3 hours. The site is scattered around the corridor and the number of sites is 29. The data set was extracted based on the National Oceanic and Atmospheric Administration's National Environmental Information Center (NCEI) hourly/sub-hour observation dataset. In addition to the data itself, each data includes information such as data quality assessment results and data acquisition methods. In addition, the precipitation data of each site is composed of 4 detection devices to ensure data stability. Snow depth data includes snow depth and equivalent water depth dimensions, ie the depth of water after the snow melts.
LI Shengyu, FAN Jinglong
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
YANG Kun
The data set is the average wind speed of the Central Asia including three temperate deserts, the Karakum, Kyzylkum and Muyunkun Deserts, and one of the world's largest arid zones. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The data is in tif format. The space and time resolutions are 0.25° and 3 hours respectively. The time is from 01, January, 2017 to 31, December, 2017. The data set uses the the Geodetic coordinate system. We can use the data to calculate the sand flux. It can be used for the investigation of the Desert oil and gas field, and oasis cities.
GAO Xin
(1)This data set provides atmospheric temperature (2 meters above land surface), vapor content, precipitation, press, wind velocity and solar radiation (since 2015). (2)All data were generated using AWS (auto weather station), and been calculated their daily average. (3)All data are presented here are raw data, after being evaluated regarding their quality. (4)This data set could be used in background description for related studies.
Da Wei, WANG Xiaodan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from August 31 to December 24, 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn