This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
The data is an excel file, which includes four tables named as follows: Altay Snow DOC Time Series, Altay Snow Pit Data, Altay Snow MAC (absorption section) and Central Asia Mos Island Glacier BC, OC, DUST Data. Altay snow DOC table includes seven columns including sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 47 sample data. Altay snow pit table includes 8 columns including snow pit number, sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 238 sample data. Altay snow MAC table includes: sampling time, MAC and AAE, a total of three columns, and 46 sample data. The BC, OC and DUST data tables of glaciers in Central Asia's Muse Island include 8 columns: code no (sample number), Latitude (latitude), Longitude (longitude),/m a.s.l (altitude), snow type (snow type), BC, OC and DUST, which are analyzed by sampling time. There are 105 rows of data in total. Abbreviation explanation: DOC: Dissolved Organic Carbon MAC: mass absorption cross section BC: black carbon DUST: Dust OC: Organic carbon TN: Total Nitrogen PPM: ug g-1 (microgram per gram) PPb: ng g-1 (nanogram per gram)
ZHANG Yulan
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
MA Yuan
China cloud-removal snow albedo product data set is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
The dataset contains microbial amplicon sequencing data from a total of 269 ice samples collected from 15 glaciers on the Tibetan Plateau from November 2016 to August 2020, including 24K Glacier (24K), Dongkemadi Glacier (DKMD), Dunde Glacier (DD), Jiemayangzong Glacier (JMYZ), Kuoqionggangri Glacier (KQGR), Laigu Glacier (LG), Palung 4 Glacier (PL4), Qiangtang 1 Glacier (QT), Qiangyong Glacier (QY), Quma Glacier (QM), Tanggula Glacier (TGL), Xiagangjiang Glacier (XGJ), Yala Glacier (YA), Zepugou Glacier (ZPG), ZhufengDongrongbu Glacier (ZF). The sampling areas ranged in latitude and longitude from 28.020°N to 38.100°N and 86.28°E to 95.651°E. The 16s rRNA gene was amplified by polymerase chain reaction (PCR) using 515F/907R (or 515F/806R) primers and sequenced with the Illumina Hiseq2500 sequencing platform to obtain raw data. The selected primer sequences were "515F_GTGYCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT" "515F_GTGCCAGCMGCCGCGG; 806R_ GGACTACHVGGGTWTCTAAT". The uploaded data include: sample number, sample description, sampling time, latitude and longitude coordinates, sample type, sequencing target, sequencing fragment, sequencing primer, sequencing platform, data format and other basic information. The sequencing data are stored in sequence file data format forward *.1.fq.gz and reverse *.2.fq.gz compressed files.
LIU Yongqin
The Asian water tower region, with the Qinghai-Tibet Plateau as the core, is the most widely distributed snow area on Earth except for the North and South Poles. The topographic heterogeneity of the Asian water tower region is great, and the snow in the region shows a thin snow layer and large patchy distribution, resulting in the high time-varying characteristics of the snow in the region, so there is an urgent need for daily-scale dynamic monitoring data of snow cover. This dataset is based on the MODIS global surface reflectance product, MO/YD09GA, using the Multiple Endmember Spectral Mixture Analysis- Automatic-selected Endmembers (MESMA -AGE) and interpolation algorithm based on spatial and temporal information to construct a MODIS day-by-day cloud-free snow cover dataset for the Asian water tower region from 2000 to 2020. With high spatial resolution Landsat images as “ground truth”, the root mean square error is 0.14, which is better than the two snow datasets MODSCAG and MOD10A1 commonly used internationally. The time series of this dataset is from February 26, 2000 to March 31, 2020, which can provide quantitative spatial distribution information of snowpack for mountain hydrological models, land surface models, and numerical weather forecasts.
JIANG Lingmei, PAN Fangbo , WANG Gongxue , PAN Jinmei, SHI Jiancheng, ZHANG Cheng
ChinaSA is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions. To assess the retrieval quality of ChinaSA, the accuracy of the snow albedo product was verified using observations from in-situ meteorological stations and the sample observation validation method, and compared with the accuracy of four commonly used albedo products (GLASS, GlobAlbedo, MCD43A3 and SAD). The validation results show that ChinaSA outperforms the other products in all validations, with a root mean square error (RMSE) of less than 0.12, and can achieve a RMSE of 0.021 in forest areas.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
HUANG Yan , XU Jianghui
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
This dataset is derived from the paper: Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15,4261-4279. ln this paper, the performance of the AVHRR GAC snowpack product in the Hindu Kush Himalayas is comprehensively evaluated for the first time on a long time scale (1982-2018) based on ground station data, Landsat data, and MODIS snowpack product, respectively, including the consistency of the accuracy/precision of the product over a long time series, and the consistency of the product with Landsat and MODIS snowpack data in terms of spatial distribution. The main factors affecting the accuracy of the AVHRR GAC snowpack product are also revealed.
WU Xiaodan
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
From 2015 to 2020, physicochemical properties of glacial snow and ice of NO.15 glacier (NO.15), 24K glacier (24K), Azha glacier(AZ), Cuopugou glacier(CPG), Demula glacier (DML), Dongrongbu glacier (DRB), Dongkemadi glacier (DKMD), Dunde glacier (DD), Guliya glacier (GLY), Hongqi Lapu glacier (HQLP), Kangxiwa River glacier (KXW), Kangwure glacier (KWR), Kuoqionggangri glacier (KQGR), Langadingri glacier (LADR), Mengdagangri glacier (MDGR), Mugagangqiong glacier (MGGQ), Muji glacier (MJ), Mushtag glacier (MSTG), Namunani glacier (NMNN), Nima glacier (NM), Nujiangyuantou (NJYT), Palung 4 glacier (PL4), Qiangtang No.1 glacier (QT), Qiangyong glacier (QY), Quma glacier (QM), Seqila glacier (SQL), Tanggula longxiazailongba glacier (LXZ), Xiagangjiang glacier (XGJ), Yala glacier (YL), Zepugou glacier (ZPG), Zhuxigou glacier (ZXG) on the Tibetan plateau, including DOC The samples were analyzed by 0.45 µm molecular membranes. Samples were filtered through 0.45 micron molecular membranes and tested using a Shimadzu TOC-L instrument, while ion concentrations were measured by ion chromatography. The unit of the indicator is mg/L. "n.a." means below the detection limit of the instrument, and "\" means missing value. Sheet1 in the table is "Physicochemical properties of glaciers and snow ice on the Tibetan Plateau (2015-2020)", and sheet2 is "Basic information of glaciers".
LIU Yongqin
Record the original collection process of glacier, runoff, soil and air microbial samples. 1) Collection of ice and snow microbial samples: wear clean gloves during collection and collect ice and snow into clean self sealing bags. 2) Collection of ice dust microbial samples: insert the hose into the bottom of the ice and snow cave, suck the sediment and melt water into the sampling bottle with a syringe, store them at low temperature and bring them back to the laboratory. Both the sediment and melt water on the top of the ice dust cave are used to extract environmental DNA. 3) Runoff includes ice runoff and glacier front runoff, and the runoff melt water is directly collected into the sampling bottle or water collection bag. 4) Collection of soil in front of Glacier: collect soil samples with shovel, put the soil into clean whirl Pak sampling bag after passing 2mm soil sieve, and then store it at low temperature for subsequent soil DNA extraction. 5) Air membrane sample collection: place the designed sampling device at the sampling point. The lower part of the device is a battery (continuous operation for 48h), and the upper part contains two filter membranes to collect air microorganisms for DNA extraction. 6) for real-time monitoring of physical and chemical properties in Glacier runoff and melt water, use YSI multi parameter water quality instrument to directly put it into the sample to be measured to obtain temperature, do, chlorophyll concentration, etc.
LIU Yongqin
Supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19070100). Tao Che, the director of this program, who comes from Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS. They used machine learning methods combined with multi-source gridded snow depth product data to derive a long-time series over the Northern Hemisphere. Firstly, the applicability of artificial neural network (ANN), support vector machine (SVM) and random forest (RF) method in snow depth fusion are compared. It is found that random forest method shows strong advantages in snow depth data fusion. Secondly, using the random forest method, combined with remote sensing snow depth products such as AMSR-E, AMSR-2, NHSD and GlobSnow and reanalysis data such as ERA-Interim and MERRA-2. These gridded snow depth products and environmental factor variables are used as the input independent variables of the model. In situ observations of China Meteorological Station (945), Russia Meteorological Station (620), Russian snow survey data (514), and global historical meteorological network (41261) are used as reference truth to train and verify the model. The daily gridded snow depth dataset of the snow hydrological year from 1980 to 2019 (September 1 of the previous year to May 31 of the current year) is prepared on the cloud platform provided by the CASEarth. Since the passive microwave brightness temperature data from 1980 to 1987 is the data of every other day, there will be a small number of missing trips in the data during this period. Using the ESM-SnowMIP and independent ground observation data for verification, the quality of the fusion data set has been improved. According to the comparison between the ground observation data and the snow depth products before fusion, the determination coefficient (R2) of the fusion data is increased from 0.23 (GlobSnow snow depth product) to 0.81, and the corresponding root mean square error (RMSE) and mean absolute error (MAE) are also reduced to 7.7 cm and 2.7 cm.
CHE Tao, HU Yanxing, DAI Liyun, XIAO Lin
China's daily snow depth simulation and prediction data set is the estimated daily snow depth data of China in the future based on the nex-gdpp model data set. The artificial neural network model of snow depth simulation takes the maximum temperature, minimum temperature, precipitation data and snow depth data of the day as the input layer of the model, The snow depth data of the next day is used as the target layer of the model to build the model, and then the snow depth simulation model is trained and verified by using the data of the national meteorological station. The model verification results show that the iterative space-time simulation ability of the model is good; The spatial correlations of the simulated and verified values of cumulative snow cover duration and cumulative snow depth are 0.97 and 0.87, and the temporal and spatial correlations of cumulative snow depth are 0.92 and 0.91, respectively. Based on the optimal model, this model is used to iteratively simulate the daily snow depth data in China in the future. The data set can provide data support for future snow disaster risk assessment, snow cover change research and climate change research in China. The basic information of the data is as follows: historical reference period (1986-2005) and future (2016-2065), as well as rcp4.5 and rcp8.5 scenarios and 20 climate models. Its spatial resolution is 0.25 ° * 0.25 °. The projection mode of the data is ease GR, and the data storage format is NC format. The following is the data file information in NC Time: duration (unit: day) Lon = 320 matrix, 320 columns in total Lat = 160 matrix, 160 rows in total X Dimension: Xmin = 60.125; // Coordinates of the corner points of the lower left corner grid in the X direction of the matrix Y Dimension: Ymin = 15.125; // Coordinates of the corner points of the grid at the lower left corner of the Y-axis of the matrix
CHEN Hongju, YANG Jianping, DING Yongjian
Snow water equivalent (SWE) is an important parameter of the surface hydrological model and climate model. The data is based on the ridge regression algorithm of machine learning, which integrates a variety of existing snow water equivalent data products to form a set of snow water equivalent data products with continuous time series and high accuracy. The spatial range of the data is Pan-Arctic (45 N° to 90 N °), The data time series is 1979-2019. The dataset is expected to provide more accurate snow water equivalent data for the hydrological and climate model, and provide data support for cryosphere change and global change.
LI Hongyi, SHAO Donghang, LI Haojie, WANG Weiguo, MA Yuan, LEI Huajin
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
This data set comes from the book: glaciers in Hengduan Mountain area, which belongs to the series of scientific investigation in Hengduan Mountain Area of Qinghai Tibet Plateau. The chief editor is Li Jijun, the deputy chief editor is Su Zhen, and the guiding unit is Institute of geography, Chinese Academy of Sciences. The research team of the book is the Qinghai Tibet Plateau comprehensive research team of the Chinese Academy of Sciences, and the publishing house is Science Press. Due to abundant rainfall and deep snow cover in some areas of Hengduan Mountain. Avalanche, wind blown snow and abnormal snowfall have become a common natural disaster, which has caused great damage to the work and life of local residents. This book makes a detailed record of the snow disaster in Hengduanshan area. The data includes two workbooks and two pictures, which are the statistical table of snow damage status and damage degree, the regional characteristics of avalanche, the topographic cutting degree map of Western Sichuan, Northern Yunnan and southeastern Tibet, and the damage scope map of Hengduanshan avalanche.
LI Jijun
High Mountain Asia is the third largest cryosphere on earth other than the Antarctic and Arctic regions. The large amounts of glaciers and snow over the High Mountain Asia play an important role not only on global water cycle but also on water resources and ecology of the arid regions of central Asia. The snowline, as the lower boundary of the snow covered area at the end of melting season, its altitude changes can directly reflect the changes in snow and glaciers. The snowline altitude provides a possibility to rapidly obtain a proxy for their equilibrium line altitude (ELA) which in turn is an indicator for the glacier mass balance. In this dataset, the daily MODIS snow cover products from 2001 to 2019 are used as the main data source. The cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. The altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the hypsometric (area-elevation) curve. Finally, the 30km gridded dataset of snowline altitude in the High Mountain Asia during 2001-2019 is generated. This dataset can provide data support for the study of cryosphere and climate change over the High Mountain Asia.
TANG Zhiguang, DENG Gang, WANG Xiaoru
The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,
DAI Liyun
High Asia is very sensitive to climate change, and is a hot area of global change research. The changes of temperature and precipitation will be reflected in the freezing and thawing time of ice and snow. Satellite microwave remote sensing can provide continuous monitoring ability of ice and snow surface state in time and space. When a small part of ice and snow begins to melt, micro liquid water will also be reflected in active and passive microwave remote sensing signals. In the microwave band, the dielectric constant of ice and liquid water is very different, so it provides a basic theory for the microwave remote sensing monitoring of ice and snow melting. In the case of passive microwave, when ice and snow begin to melt and liquid water appears, its absorption and emissivity increase rapidly, so its emissivity, brightness temperature and backscatter coefficient will also change rapidly. This data set is the initial time of ice and snow melting in the high Asia region retrieved by using the satellite microwave radiometer and scatterometer observations from 1979 to 2018. The passive microwave remote sensing data are SMMR on satellite (1979-1987) and SSM / i-ssmis radiometer on DMSP (1988 present). The active microwave remote sensing data is the QuikSCAT satellite scatterometer (2000-2009).
Xiong Chuan, SHI Jiancheng, YAO Ruzhen, LEI Yonghui, PAN Jinmei
This data includes the daily average water temperature data at different depths of Nam Co Lake in Tibet which is obtained through field monitoring. The data is continuously recorded by deploying the water quality multi-parameter sonde and temperature thermistors in the water with the resolution of 10 minutes and 2 hours, respectively, and the daily average water temperature is calculated based on the original observed data. The instruments and methods used are very mature and data processing is strictly controlled to ensure the authenticity and reliability of the data; the data has been used in the basic research of physical limnology such as the study of water thermal stratification, the study of lake-air heat balance, etc., and to validate the lake water temperature data derived from remote sensing and different lake models studies. The data can be used in physical limnology, hydrology, lake-air interaction, remote sensing data assimilation verification and lake model research.
WANG Junbo
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
SHER Muhammad
The continuous snow cover area in time and space is one of key elements to study of land surface energy and water exhange, mountain hydrology, land surface model, numerical weather forecast and climate change. However, the large number of clouds causes data gaps in the snow cover area from optical remote sensing. The MODIS observations of Terra and aqua, FY-2E and FY-2F VISSR are used to obtain fractional snow cover (subpixel snow cover) which is less affected by the cloud, and the snow cover of the remaining cloud pixels is supplemented according to the time series information. Finally the cloudless daily snow fraction is obtained. This data set includes the daily fractional snow cover at 5 km spatial resolution in the Tibetan Plateau and China.
JIANG Lingmei
The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2019-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.
HAO Xiaohua
The fraction snow cover (FSC) is the ratio of the snow cover area SCA to the pixel space. The data set covers the Arctic region (35 ° to 90 ° north latitude). Using Google Earth engine platform, the initial data is the global surface reflectance product with a resolution of 1000m with mod09ga, and the data preparation time is from February 24, 2000 to November 18, 2019. The methods are as follows: in the training sample area, the reference data set of FSC is prepared by using Landsat 8 surface reflectance data and snomap algorithm, and the data set is taken as the true value of FSC in the training sample area, so as to establish the linear regression model between FSC in the training sample area and NDSI based on MODIS surface reflectance products. Using this model, MODIS global surface reflectance product is used as input to prepare snow area ratio time series data in the Arctic region. The data set can provide quantitative information of snow distribution for regional climate simulation and hydrological model.
MA Yuan, LI Hongyi
This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2020. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.For header file information, refer to the data set header.txt.
DAI Liyun
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
WANG Lei
This data set provides daily snow thickness distribution data of China from October 24, 1978 to December 31, 2012, with a spatial resolution of 25km.The original data used for the inversion of the snow depth data set came from SMMR (1978-1987), SSM/I (1987-2008) and amsr-e (2002-2012) daily passive microwave bright temperature data processed by the national snow and ice data center (NSIDC).As the three sensors are mounted on different platforms, there is a certain system inconsistency in the obtained data.The time consistency of bright temperature data is improved by cross calibration of bright temperature of different sensors.Then, based on Chang algorithm, Dr. Che tao is used to carry out snow depth inversion.Refer to the data description document for specific inversion methods.
CHE Tao, LI Xin, DAI Liyun
The basic meteorological data set of the China-Mongolia-Russia Economic Corridor meteorological station includes wind speed, wind direction, precipitation, temperature and snow depth. The time resolution is 3 hours. The site is scattered around the corridor and the number of sites is 29. The data set was extracted based on the National Oceanic and Atmospheric Administration's National Environmental Information Center (NCEI) hourly/sub-hour observation dataset. In addition to the data itself, each data includes information such as data quality assessment results and data acquisition methods. In addition, the precipitation data of each site is composed of 4 detection devices to ensure data stability. Snow depth data includes snow depth and equivalent water depth dimensions, ie the depth of water after the snow melts.
LI Shengyu, FAN Jinglong
The “Long-term series of daily global snow depth” was produced using the passive microwave remote sensing data. The temporal range is 1980~2018, and the coverage is the global land. The spatial resolutions is 25,067.53 m and the temporal resolution is daily. A dynamic brightness temperature gradient algorithm was used to derive snow depth. In this algorithm, the spatial and temporal variations of snow characteristics were considered and the spatial and seasonal dynamic relationships between the temperature difference between 18 GHz and 36 GHz and the measured snow depth were established. The long-term sequence of satellite-borne passive microwave brightness temperature data used to derive snow depth came from three sensors (SMMR, SSM/I and SSMI/S), and there is a certain system inconsistency among them. So, the inter-sensor calibration was performed to improve the temporal consistency of these brightness temperature data before snow depth derivation. The accuracy analysis shows that the relative deviation of Eurasia snow depth data is within 30%. The data are stored as a txt file every day, each file is a 1383*586 snow depth matrix, and each snow depth represents a 25,067.53m* 25,067.53m grid. The projection of this data is EASE-Grid, and following is the file header which describes the projection detail. File header: ncols 1383 nrows 586 xllcorner -17334193.54 yllcorner -7344787.75 cellsize 25,067.53 NODATA_value -1
CHE Tao, LI Xin, DAI Liyun
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
Soluble organic carbon (DOC) in snow and ice can effectively absorb the solar radiation in the ultraviolet and near ultraviolet band, which is also one of the important factors leading to the enhancement of snow and ice ablation. Through the continuous snow samples from November 2016 to April 2017 in Altay area, the data of DOC, TN and BC of snow in kuwei station in Altay area were obtained through the experimental analysis and test with the instrument. The time resolution was weeks and the ablation period was daily. 1. Unit: Doc and TN unit μ g-1 (PPM), BC unit ng g-1 (ppb), MAC unit M2 g-1
SHANGGUAN Donghui
This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CAO Guangzhen
Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CHU Duo
The long-time series data set of snow cover area on the qinghai-tibet plateau is derived from the fusion of MODIS 005 version and IMS data set, andThe cloud-free products of daily snow cover area were obtained by using interpolation de-cloud algorithm.The projection is latitude and longitude, the spatial resolution is 0.005 degrees (about 500m), and the time is a long time series from January 1, 2003 to December 31, 2014. Each file is the result of the proportion of snow cover area on that day, and the value is 0-100 (%). It is the ENVI standard file, The naming convention: ims_mts_yyyyddd.tif, where YYYY stands for year and DDD stands for Julian day (001-365/366).Files can be directly used ENVI or ARCMAP software open view. Document description: 200 snow, 100 lake ice, 25 land, 37 sea
HAO Xiaohua
The daily cloudless MODIS Snow area ratio data set (2000-2015) of the Qinghai Tibet Plateau is based on MODIS daily snow product - mod10a1, which is obtained by using a cloud removal algorithm based on cubic spline interpolation. The data set is projected by UTM with spatial resolution of 500m, providing daily snow cover FSC results in the Tibetan Plateau. The data set is a day-to-day document, from 24 February 2000 to 31 December 2015. Each file is the result of snow area proportion on that day, the value is 0-100%, which is envi standard file, the naming rule is: yyyddd_fsc_0.5km.img, where yyyy represents the year, DDD represents Julian day (001-365 / 366). Files can be opened and viewed directly with envi or ArcMap. The original MODIS Snow data product for cloud removal comes from the mod10a1 product processed by the National Snow and Ice Data Center (NSIDC). This data set is in the format of HDF and uses the sinusional projection. The attributes of the daily cloudless MODIS Snow area ratio data set (2000-2015) on the Qinghai Tibet Plateau consist of the spatial-temporal resolution, projection information and data format of the data set. Temporal and spatial resolution: the temporal resolution is day by day, the spatial resolution is 500m, the longitude range is 72.8 ° ~ 106.3 ° e, and the latitude is 25.0 ° ~ 40.9 ° n. Projection information: UTM projection. Data format: envi standard format. File naming rules: "yyyyddd" + ". Img", where yyyy stands for year, DDD stands for Julian day (001-365 / 366), and ". Img" is the file suffix added for easy viewing in ArcMap and other software. For example, 2000055 ﹐ FSC ﹐ 0.5km.img represents the result on the 55th day of 2000. The envi file of this data set is composed of header file and body content. The header file includes row number, column number, band number, file type, data type, data record format, projection information, etc.; take 2000055 ﹣ FSC ﹣ 0.5km.img file as an example, the header file information is as follows: ENVI Description = {envi file, created [sat APR 27 18:40:03 2013]} Samples = 5760 Lines = 3300 Bands = 1 Header offset = 0 File type = envi standard Data type = 1: represents byte type Interleave = BSQ: data record format is BSQ Sensor type = unknown Byte order = 0 Map Info = {UTM, 1.500, 1.500, - 711320.359, 4526650.881, 5.0000000000e + 002, 5.0000000000e + 002, 45, north, WGS-84, units = meters} Coordinate system string = {projcs ["UTM [u zone [45N], geocs [" GCS [WGS [1984], data ["d [WGS [1984", organization ID ["WGS [1984", 6378137.0298.257223563]], prime ["Greenwich", 0.0], unit ["degree", 0.01745532925199433]]] project ["transfer [Mercator"]] parameter ["false [easting", 500000.0], parameter ["false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [false [false [easting ", 500000.0], parameter], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter [false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter ["false_northing", 0.0], parameter ["central_meridian", 87.0], parameter ["scale" _Factor ", 0.9996], parameter [" latitude ﹣ of ﹣ origin ", 0.0], unit [" meter ", 1.0]]} Wavelength units = unknown, band names = {2000055}
TANG Zhiguang, WANG Jian
Among many indicators reflecting changes in climate and environment, the stable isotope index of ice core is an indispensable parameter in ice core record research, and it is one of the most reliable means and the most effective way to restore past climate change. Meanwhile, ice core accumulation is a direct record of precipitation on the glacier, and high-resolution ice core records ensure continuity of precipitation records. Therefore, ice core records provide an effective means of restoring changes in precipitation. Stable isotopes from ice cores drilled throughout the TP have been used to reconstruct climate histories extending back several thousands of years. This dataset provides data support for studying climate change on the Tibetan Plateau.
XU Baiqing
As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. By drilling and sampling ice cores and snow samples and measuring BC concentration, historical record and spatial distribution can be abtained. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.
XU Baiqing
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
ZHANG Yinsheng
The data set of ice core-snow black carbon content on the Tibetan plateau (1950-2006) contains five (5) tables: 1 Xu et al. 2006 AG, 2 Xu et al. 2009 PNAS_Conc., 3 Xu et al. 2009 PNAS_flux, 4 Xu et al. 2012 ERL, 5 Wang et al. 2015 ACP. The data collection sites include the Meikuang glacier, Dongkemadi, Qiangyong, Kangwure, Naimona’nyi, Muztagata, Rongbuk, Tanggula Mountain, Ningjin Gangsang, Zuoqipu, and Glacier No. 1 at the headwaters of the Ürüqi River. The latitudes and longitudes of the collection locations, elevations and other information are marked in the data. The main indicators of the data are location, time, organic carbon (OC), elemental carbon (EC), black carbon (BC) content and flux. Location: latitude and longitude Time: year or date OC: organic carbon EC: elemental carbon BC: Black carbon Conc.: content, unit: ng g-1 Flux: flux, unit: mg m-2a-1 The data come from the following subjects. 1. National Program on Key Basic Research Project (973 Program):Temporal and Spatial Characteristics and Remote Sensing Modeling of Global Change Sensitive Factors; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 2. National Key Basic Research Program: The Response of Formation and Evolution on the Tibetan Plateau to Global Changes and Adaptation Strategy; Person in charge: Tandong Yao; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 3. The General Program of National Natural Science Foundation of China: High-resolution Carbon Black Recording in Snow Ice of the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 4. The General Program of the National Natural Science Foundation of China: Extraction of Climate and Environment Information from Ice Core Encapsulated Gas on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 5. National Natural Science Foundation of China for Distinguished Young Scholars: Snow and Ice-Atmospheric Chemistry and Environmental Changes on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 6. National Natural Science Foundation of China for Distinguished Young Scholars: Study on the Changes of Aerosol Emissions and Combustion in Human Activities in South Asia in the Past 100 Years; Person in charge: Mo Wang; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). Observation methods: two-step heating method, thermal/optical carbon analysis method, and single-particle black carbon aerosol photometer.
XU Baiqing
The data include three data sets of Namcu and Muztagh Ata: an atmospheric aerosol data set of monthly average values of TSP, lithium, sodium and other elements; an atmospheric precipitation chemical data set of monthly average values of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions; and a data set of chemical compositions of snow ice in the Zhadang Glacier of Namcu Basin of the concentrations of soluble sodium ions, potassium ions, magnesium ions, calcium ions and other ions in snow pits collected in different months. The data can be used in conducting located observations of atmospheric aerosol element content, precipitation chemistry, and glacier snow ice chemical records in the Namco and Muztagh Ata areas. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes of CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the samples. Data collection and processing: 1. The automatic rain gauges were erected in the typical regions of the Tibetan Plateau (the Namco Basin and the Muztagh Ata Peak area) to collect precipitation samples. The precipitation samples were collected using a SYC-2 type rainfall sampler that comprised a collector, rain sensor and gland drive. The sample collector was provided with a rain collection bucket and a dust collection bucket, and the weather condition was sensed by the rain sensor. The rain collection bucket would be opened when it started to rain, and the gland would be pressed onto the dust collection bucket. Meanwhile, the date and the rain start and end times were automatically recorded. When the rain stopped, the gland automatically flipped to the rain collection bucket to complete a rainfall record. The collected samples were placed in 20 mL clean high-density polyethylene plastic bottles and refrigerated in a -20 °C refrigerator. They were frozen during transportation and storage until right before being analyzed, when they would be taken from the refrigerator and thawed at room temperature (20 °C). They were then processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentration of soluble anions and cations in the precipitation. 2. The atmospheric aerosol sampler installed at Namco Station was 4 m above the ground and included a vacuum pump, which was powered by solar panels and batteries. The air flux was recorded by an automatic flow meter, and the instantaneous flow rate was approximately 16.7 L/min. The air flux took the meteorological parameter conversion of the Namco area as the standard volume. A Teflon filter with a diameter of 47 mm and a pore size of 0.4 & mu; m was used. The sample interval was 7 days, and the total sample flow rate of each sample was approximately 120-150 m³. Each sample was individually placed in a disposable filter cartridge and stored at low temperature in a refrigerator. Before and after sampling, the filter was placed in a constant temperature (20 ± 5 °C) and constant humidity (40 & plusmn; 2%) environment for 48 hours and weighed with a 1/10000 electronic balance (AUW220D, Shimadu); the difference between the weights before and after was the weight of the aerosol sample on the filter. The collected samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS by ICP-MS to determine the concentrations of 18 elements. Strict measures were taken during indoor and outdoor operations to prevent possible contamination. 3. A precleaned plastic shovel was used to collect a sample every 5 cm from the lower part of the snow pit (samples were collected every 10 cm in some snow pits). The samples were dissolved at room temperature, placed in 20 mL clean high-density polyethylene plastic bottles and stored in a refrigerator at -20 °C. The samples were frozen during transportation and storage until they were taken out of the refrigerator before the analysis and melted at room temperature. The samples were processed at the Key Laboratory of Tibetan Environment Changes and Land Surface Processes CAS using ICS2500 and ICS2000 ion-chromatographic analyzers to determine the concentrations of soluble anions and cations in the samples. Clean clothing, disposable masks and plastic gloves should be worn during the manual collection of glacier snow ice chemical samples to prevent contamination. The data set was processed by forming a continuous sequence of monthly mean values after the raw data were quality controlled. It meets the accuracy of routine monitoring research on precipitation, aerosol, snow and ice records in China and the world and is satisfactory for comparative study with relevant climate change records.
KANG Shichang
The variation in the duration of snow on the Tibetan Plateau is relatively great, and the high mountainous areas around the plateau are rich in snow and ice resources. Taking full account of the terrain of the Tibetan Plateau and the snow characteristics in the mountains, the data set adopted AVHRR data to gradually realize generating data products for daily, ten-day, and monthly snow cover areas while maintaining the snow classification accuracy. These data included the daily/10-day/monthly snow cover area data for the Tibetan Plateau from 2007 to 2015, the average accuracy of which is 0.92. It can provide reliable data for snow changes during the historical periods of the Tibetan Plateau.
QIU Yubao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn