CAS FGOALS-f3-H, with a 0.25° horizontal resolution, and CAS FGOALS-f3-L, with a 1° horizontal resolution, were forced by the standard external conditions, and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of ‘highresSST-present’ and ‘highresSST-future’, respectively. The model outputs contain multiple time scales including the required hourly mean, three-hourly mean, six-hourly transient, daily mean, and monthly mean datasets.
BAO Qing
Numerical test: The climate model used is the regional climate model RegCM4.1. RegCM4.1 developed by the Italian Research Center for Theoretical Physics (ICTP). In the test of regional model simulation, the horizontal resolution of the atmospheric model is 50 km and the vertical direction is 18 layers; Online coupling sand dust module. Sea surface temperature The sea surface temperature interpolated by OISST is used. The test includes two groups: the Middle Paleocene topographic test (MP,~60Ma BP, test name 60ma_regcm4.1_xxx. nc) and the Late Oligocene (LO,~25Ma BP, test name 25ma_regcM4.1_xxx. nc) The MP regional terrain modification test removed the northern part of the plateau and approximately replaced the terrain distribution of Asian land during the 60Ma period. BP regional terrain modification test only removed the terrain of Pamirs Plateau, approximately replacing the terrain distribution of Asian land during the 25Ma period. The sand and dust source areas of the two tests have not changed, and the sand and dust circulation process has been opened online. Output time: All tests were integrated for 22 years, using the average results of the last 20 years of each test. The data can be used to explain the difference of drought evolution in different regions around the plateau.
SUN Hui
Based on the monthly precipitation data of 262 rain gauges, WRF and ERA5 precipitation data in the Yarlung Zangbo River basin, the daily precipitation data with a resolution of 10km from 1951 to 2020 in the Yarlung Zangbo River basin and seven sub basins are reconstructed using random forest learning algorithm. This data has been verified by the single point of the station and performs well in terms of annual and seasonal changes. And the data has been reverse evaluated by the hydrological model, which is used to drive the VIC hydrological model to simulate the runoff change of Yajiang River basin and each sub basin, and verified by the measured runoff, MODIS and glacier cataloging data. On the basis of the original first edition, this data has considered the spatial distribution characteristics of precipitation, which can better describe the precipitation characteristics in alpine regions.
SUN He
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
In the context of global change, the spatio-temporal continuous high-quality high-resolution long time series precipitation data set is of great significance for understanding the global "water carbon energy" and biogeochemical cycle mechanism. The daily total volume controlled merging and disaggregation algorithm (DTVCMDA) proposed in this study effectively considers the characteristics of continuous space-time and high spatial and temporal resolution of reanalysed precipitation data, as well as the high quality of ground analysis data, A set of AERA5 Asia (0.1 °, hourly, 1951-2015, Asia) precipitation data set with high quality and high spatial and temporal resolution for more than 70 years of long time series in Asia has been produced. The main features of the dataset are as follows: (1) AERA5 Asia is a set of data sets with high resolution, high quality, space-time continuity and long time series; (2) AERA5 Asia is significantly better than IMERG Final and ERA5 Land precipitation data, especially in terms of system deviation. In general, the deviation of AERA5 Asia, IMERG Final and ERA5 Land compared with ground observation is~5%,~11% and~20% respectively; (3) In extreme heavy rainfall (such as typhoons "Tamei" and "Tiantu"), the quality of AERA5 Asia is also significantly better than ERA5 Land and IMERG Final. AERA5 Asia will provide stable and reliable precipitation data support for relevant research in the weather, climate, hydrology and other fields in Asia, especially in China.
MA Ziqiang, MA Yaoming, MA Weiqiang*, 许金涛 XU Jintao
1) The data content includes rainfall, runoff and sediment concentration data of Qingshuihe town in Yushu, Qinghai Province and luzigou small watershed in Xigaze, Tibet; 2) The data are measured by the weighing automatic rain gauge and the runoff sediment automatic monitor. Both the weighing automatic rain gauge and the runoff sediment automatic monitor are independently developed by the water and soil conservation and ecological environment research center of the Ministry of education of the Chinese Academy of Sciences. The rainfall data are all in 2021. The runoff sediment data in the Luzi valley of Xigaze, Tibet are from May 25 to September 2, 2020. 3) the data are measured data, The abnormal values were eliminated. During the monitoring period, due to the status of the instrument, there was a lack of data. 4) This data has a wide application prospect and can be used in such subject fields as atmospheric science, soil erosion science, etc.
AN Shaoshan
As a huge elevated surface and atmospheric heat source in spring and summer, the Qinghai Tibet Plateau (TP) has an important impact on regional and global climate and climate. In order to explore the thermal forcing effect of TP, the sensitivity test data set of sensible heat anomaly on the Qinghai Tibet Plateau was prepared. This data includes three groups of sensitivity tests: (1) in the fully coupled model cesm1.2.0, the plateau sensible heat is stronger CGCM from March to may in spring_ lar_ mon_ 3-12-2.nc and plateau thermal sensitivity are weak (CGCM)_ sma_ mon_ 3-12-2. Sensitivity test of NC; (2) In the single general circulation model cam4.0, the sensible heat of the plateau is stronger in spring (March may)_ lar_ Mon 3-8.nc and low sensible heat cam_ sma_ Mon3-8.nc sensitivity test. Including: 3D wind, potential height, air temperature, surface temperature, specific humidity, sensible heat flux, latent heat flux, precipitation and other conventional variables Space scope: global simulation results
DUAN Anmin
The global high-resolution simulated near sea surface temperature precipitation SST data set from 1990 to 2020 is from the latest cmip6 project. Cmip6 is the sixth climate model comparison program organized by the world climate research project (WCRP). Original data source: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 The data set includes the global near ocean surface temperature (TMP), precipitation (PR) and sea surface temperature (TOS). The air temperature and precipitation data include the rectangular combination of shared social economic path (SSP) and representative concentration path (RCP) of four different experimental scenarios of scenario MIP in cmip6. (1) Ssp126: upgrade rcp2.6 scenario based on ssp1 (low forcing scenario) (radiation forcing will reach 2.6w/m2 in 2100). (2) Ssp245: upgrade rcp4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 w / m2 in 2100). (3) Ssp370: a new rcp7.0 emission path based on ssp3 (medium forcing scenario) (radiation forcing will reach 7.0 w / m2 in 2100). (4) Ssp585: upgrade rcp8.5 scenario based on ssp5 (high forcing scenario) (ssp585 is the only SSP scenario that can make radiation forcing reach 8.5 w / m2 in 2100). SST data provides ssp126 scenario data.
YE Aizhong
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from Janurary 1 to December 31, 2021. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. As the lake water freezes in winter, the water temperature probe is withdrawn, so there is no water temperature data record during October 19, 2020 to December 31, 2020. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from January 1 to October 9 in 2021. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from January 1 to October 13, 2021. The site (100°6'3.62"E, 37°31'15.67") was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient from Janurary 1 to October 13 in 2021. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210m.The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; towards north), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -5.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m; RH_3 m, RH_5 m, RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30.
Li Xiaoyan
Different forms of precipitation (snow, sleet, and rain) have divergent effects on the Earth’s surface water and energy fluxes. Therefore, discriminating between these forms is of significant importance, especially under a changing climate. We applied a state-of-the-art parameterization scheme with wet-bulb temperature, relative humidity, surface air pressure, and elevation as inputs, as well as observational gridded datasets with a maximum spatial resolution of 0.25◦, to generate a gridded dataset of different forms of daily precipitation (snow, sleet, and rain) and their temperature threshold across mainland China from 1961-2016. The annual snow, sleet, and rain amount were further calculated. The dataset may benefit various research communities, such as cryosphere science, hydrology, ecology, and climate change.
SU Bo , ZHAO Hongyu
This dataset provides the monitoring data of runoff, precipitation and temperature of the Duodigou Runoff Experimental Station located in the northern suburbs of Lhasa city. Among the dataset, there are two runoff monitoring stations, which provide discharge data from June to December 2019, with a data step of 10 minutes. There are five precipitation monitoring stations, which provide precipitation data from 2018 to 2021, with a data step of 1 day. There are eight air temperature monitoring stations, which provide air temperature data from 2018 to 2021 in 30 minute steps. The discharge, the precipitation and the temperature data are the measured values. The dataset can provide data support for the study of hydrological and meteorological processes in the Tibet Plateau.
LIU Jintao
This data includes the maximum 24h precipitation values of all sub watershed units along the Sichuan Tibet railway and its surrounding areas. According to the original data of the hourly observation data of China ground meteorological station, the frequency of the annual maximum 24h precipitation sequence in the assessment area is calculated. The data are accumulated according to the hourly rainfall process of each grid point from 1979 to 2018 to obtain the maximum 24h precipitation sequence year by year, fit the precipitation frequency curve of the assessment area, obtain the maximum 24h precipitation value once in ten years, and use GIS to make statistics to the sub watershed assessment unit. It can be used in the fields of weather and climate monitoring, climate change research, model test and hydrological forecast along and around the Sichuan Tibet railway.
WANG Zhonggen
This dataset organizes and collects the measured and surveyed maximum 24h precipitation point data along the Sichuan-Tibet Railway and its surrounding areas. Contains watershed KID, station, province, X coordinate, Y coordinate, rain, date and other field data. A total of 43 records. The data comes from the atlas of rainstorm statistical parameters in China (2006 Edition). The measured and investigated maximum 24h rainfall point data of China's rainstorm statistical parameter Atlas (2006 Edition) are manually digitized along the Sichuan Tibet railway and the surrounding areas. The accuracy of the original data is 1 ° × 1 ° grid data, which is suitable for the comprehensive study of design rainstorm nationwide.
WANG Zhonggen
Based on the regional environment integrated system model developed by the Key Laboratory of regional climate and environment, Chinese Academy of Sciences, a regional climate model for convective analysis of the Qinghai Tibet Plateau is established. The grid center of the model simulation area is located at (34n, 100e), the horizontal resolution is 3km, and the number of simulation grid points of the model is 465 (longitude) x 375 (latitude). The vertical direction is 27 floors. The air pressure at the top of the model layer is 50 HPA. The buffer zone consists of 15 grids, the integration time is one year in 2010, and the horizontal resolution of the European medium range weather forecast center is 0.25x0 25. The reanalysis data of era5 with a time interval of 6 hours is used as the driving field to generate the driving data of surface meteorological elements on the Qinghai Tibet Plateau in 2010 with a horizontal resolution of 3 km * 3 km and a time interval of 1 hour After dynamic downscaling by using the convection analysis regional climate model of the Qinghai Tibet Plateau, the bottleneck problem of the lack of meteorological data sets with long-time series and high spatial-temporal resolution in the Qinghai Tibet Plateau and other regions is solved, so as to provide a solid and reliable scientific data foundation for the future change of climate and environment and the construction of ecological security barrier in the Qinghai Tibet Plateau.
XIONG Zhe
The multi-scale dataset of environment and element-at-risk for the Qinghai-Tibet Plateau includes geomorphic data, normalized vegetation index data, annual temperature and rainfall data, and disaster bearing value grade data, covering an area of 6.56 million square kilometers. The data set is mainly prepared for disaster and risk assessment. Due to the huge coverage, the geomorphic data adopts 150m spatial resolution and other data adopts 1000m spatial resolution. Geomorphology, vegetation index, temperature and rainfall data are mainly produced by processing open source data, and disaster bearing value grade data are produced by superposition calculation, comprehensively considering population data, night light index, buildings and surface cover types.
TANG Chenxiao
The monthly meteorological data set with 1km resolution on the Qinghai Tibet Plateau from 2018 to 2019 is from January 2018 to December 2019. The original data comes from chelsa (climatology at high resolution for the earth's land surface areas). After spatial correction, accuracy verification and cutting, 1km resolution precipitation, wind speed, air temperature and humidity data are obtained. The data can be opened and used by ArcGIS, envi or other geographic information systems and remote sensing software.
YANG Yaping
This data set collates and collects the measured and investigated maximum 24h rainfall point data along the Sichuan Tibet railway and its surrounding areas. It contains field data of watershed kid, station, province, X coordinate, y coordinate, rain, date, etc. A total of 43 records. Data source: Atlas of rainstorm statistical parameters in China (2006 Edition). Processing method: manually digitize the measured and investigated maximum 24h rainfall point data of China's rainstorm statistical parameter Atlas (2006 Edition) in the areas along and around the Sichuan Tibet railway. The data set also includes the maximum 24h precipitation values (1950s-2010s) of all sub watershed units in the assessment area along the Sichuan Tibet railway, which are calculated according to the frequency of the annual maximum 24h precipitation sequence in the assessment area. In the process of processing, the operators are required to strictly abide by the operation specifications, and a special person is responsible for the quality review. The data integrity, logical consistency, position accuracy, attribute accuracy, edge connection accuracy and current situation all meet the requirements of relevant technical regulations and standards formulated by the State Bureau of Surveying and mapping, and the quality is excellent and reliable.
WANG Zhonggen
The data set is China's multi scenario and multi-mode monthly precipitation data, with a spatial resolution of 0.0083333 ° (about 1km) from January 2021 to December 2100. The data is in NetCDF format. The data is generated in China through the delta spatial downscaling scheme according to the global > 100 km climate model data set released in the sixth phase of the IPCC coupled model comparison program (cmip6) and the global high-resolution climate data set released by worldclim. The data adopts the latest SSP scenarios (ssp119, ssp245, ssp585) released by IPCC. Each scenario contains the climate data of three GCMS (ec-earth3, gfdl-esm4, mri-esm2-0). The geospatial range contained in the dataset is China's main land, excluding islands and reefs in the South China Sea. The unit is 0.1mm. The file name is GCM_ SSP_ Pre-30s-serial number NC, 30s, i.e. 0.0083333 °, serial number from 1-40, serial number 1 represents 2021.1-2022.12, and represents the year in turn; Based on ec-earth3_ ssp119_ pre-30s-1. NC file, for example, represents the monthly precipitation data of ec-earth3 climate model with 1km resolution from 2021.1 to 2022.12 under ssp119 scenario. For a deeper understanding of the data, please refer to the data cited in the literature and the published papers of the authors.
PENG Shouzhang
Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
Due to the uneven distribution of meteorological stations in the Sanjiang River Basin, most of them are along the traffic trunk lines, and there are many areas without observation data, it is difficult to obtain accurate spatial distribution characteristics by ordinary spatial interpolation methods. Based on worldclim v2 1 rainfall data in the spatial data set, read the rainfall data in the study area of Sanjiang River basin with MATLAB language, calculate and output the data in GIS format, and use ArcGIS software to realize the spatial distribution data set of average annual rainfall in Sanjiang River Basin from 2007 to 2018. The data set effectively solves the problem of uneven distribution of meteorological stations in Sanjiang Basin due to complex terrain and many mountains and valleys, and can better reflect the long-term average distribution of annual rainfall in Sanjiang Basin from 2007 to 2018. It provides a basis for the external dynamic environmental factors of landslide development in the region.
LIU Minghao
Rainfall is one of the important external dynamic environmental factors affecting the stability of landslides in Sanjiang Basin of Qinghai Tibet Plateau. Collect the monthly rainfall data of 10 meteorological observation stations in the typical area of Sanjiang River Basin in the study area, including Wudaoliang, Tuotuo River, qumalai, Naqu, Yushu, Dingqing, Changdu, Batang, Derong and Lijiang. Process the collected data through screening, elimination and classification calculation, and obtain the time series data set of annual rainfall external dynamic environmental factors in key areas of the study area from 2000 to 2020. Through this data set, It can reflect the change law and trend of annual rainfall in key areas of Sanjiang Basin from 2000 to 2020, and understand the change of rainfall, the external dynamic factor affecting the landslide on the Qinghai Tibet Plateau.
LIU Minghao
The surface meteorological data of tianmogou in Bomi county are collected from the meteorological monitoring points arranged in the middle reaches of tianmogou in PALONG Zangbu basin. The data collection time is 2020. The main content of the data includes the observation data of rainfall and temperature in tianmogou. The rainfall data is collected by hobo rain gauge. Hobo rain gauge is a tipping bucket rain gauge. Every 0.2mm rainfall is recorded as an event, and the number of recorded events is output. The number of events multiplied by 0.2mm is the rainfall value; The air temperature is measured by a built-in 10 bit resolution temperature sensor in the data recorder. The acquisition method is to collect and store once every hour, and the hourly average value of air temperature can be obtained. The data is reliable in quality and high in accuracy. It can be used to reflect the real-time changes of rainfall and temperature in Tianmo gully, monitor the critical conditions of debris flow start-up, and predict the possibility of future debris flow events in this area.
HOU Weipeng
This data set records the meteorological data in the observation field of Ngari Station for Desert Environment Observation and Research (33 ° 23.42 ′ N, 79 ° 42.18 ′ E, 4270 m asl) from 2019 to 2020, with a time resolution of days. It includes the following basic parameters: air temperature (℃), relative humidity (%), wind speed (m/s), wind direction (°), air pressure (hPa), precipitation (mm), water vapor pressure (kPa), downward short wave radiation (W/m^2), Upward short wave radiation (W/m^2), Downward long wave radiation(W/m^2), Upward long wave radiation(W/m^2), Net radiation(W/m^2), Surface albedo (%), soil temperature (℃), soil water content (%). Sensor model of observation instrument: atmospheric temperature and humidity: HMP45C; Precipitation: t200-b; Wind speed and direction: Vaisala 05013; Net radiation: Kipp Zonen NR01; Air pressure: Vaisala PTB210; Soil temperature: 109 temperature probe; Soil moisture content: CS616. Data collector: CR1000. The time resolution of the original data is 30 min. The data can be used by scientific researchers engaged in meteorology, atmospheric environment or ecology.
ZHAO Huabiao
This meteorological data is the basic meteorological data of air temperature, relative humidity, wind speed, precipitation, air pressure, radiation, soil temperature and humidity observed in the observation site (86.56 ° e, 28.21 ° n, 4276m) of the comprehensive observation and research station of atmosphere and environment of Qomolangma, Chinese Academy of Sciences from 2019 to 2020. Precipitation is the daily cumulative value. All data are observed and collected in strict accordance with the instrument operation specifications, and some obvious error data are eliminated when processing and generating data The data can be used by students and scientific researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from Qomolangma station for atmospheric and environmental observation and research, Chinese Academy of Sciences (QOMS / CAS))
XI Zhenhua
The data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation and test carried out in Liupanshan area during 2021. Liupanshan scientific research is carried out in Dawan station, Jingyuan station, Liupanshan station, Longde station, etc. Dawan station is mainly equipped with cfl-06 wind profile radar, ht101 cloud radar, mrr-2 micro rain radar, dsg5 raindrop spectrometer, three-dimensional anemometer, C12 laser cloud altimeter. Jingyuan station is mainly equipped with qfw-6000 microwave radiometer, hmb-kps cloud radar, dsg5 raindrop spectrometer Cl51 laser cloud altimeter. Liupanshan station is mainly equipped with ht101 cloud radar, mrr-2 micro rain radar, Ott laser raindrop spectrometer, cloud condensation nodule (CCN) counter, three-dimensional anemometer, FM120 droplet spectrometer and C12 laser cloud altimeter. Longde station is mainly equipped with rpg-hatpro-g4 microwave radiometer, cfl-06 wind profile radar, ht101 Cloud Radar, mrr-2 micro rain radar Ott laser raindrop spectrometer, C12 laser cloud altimeter. Meanwhile automatic weather station, iron tower (Shangpu), X-band all solid-state dual polarization Doppler Weather Radar (Pengyang County), gradient station and other observations were done. It can be used to study the impact of the eastward movement of the plateau system on the downstream, and to reveal the impact of the atmospheric boundary layer and free atmospheric exchange process on aerosols, clouds Fog and precipitation and their interaction.
FU Danhong
The data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation and test carried out in Sanjiangyuan area during 2021. The scientific research of Sanjiangyuan mainly focuses on Advanced Air King aircraft observation. The airborne observation system includes aerosol, cloud particle spectrometer and imager observation. The observation elements include precipitation particle concentration and image of IP probe, cloud particle concentration and image of CIP probe, cloud and aerosol particle data of CAS probe and Hotwire_ LWC probe liquid water data, CAPS Summary aerosol, cloud and precipitation comprehensive data, AIMMS probe conventional meteorological elements, PCASP -100 probe aerosol particle data. Ground observation includes raindrop spectrometer, microwave radiometer and X-band radar. Raindrop spectrometer mainly observes equivalent volume diameter and particle falling speed. Microwave radiometer mainly observes temperature, humidity, water vapor and liquid water. And X-band radar mainly observes intensity, velocity and spectral width. It can provide data support for the study of the impact of westerly monsoon synergy on the cloud precipitation process of Sanjiang source.
FU Danhong
This data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the comprehensive investigation test carried out on the South and north slopes of Qilian Mountains during 2020. The air observation is mainly conducted by the king aircraft in the air. The ground investigation includes automatic weather station, raindrop spectrometer, microwave radiometer, Cloud Radar, sounding second data, etc. The observation elements of automatic weather station include air temperature, air pressure, humidity Wind direction, wind speed, precipitation. The observation elements of raindrop spectrometer include particle spectrum, precipitation intensity, etc. The observation elements of microwave radiometer are atmospheric temperature and humidity profiles. The observation elements of cloud Radar are mainly fixed-point vertical observation data. Meanwhile aerosol, rain, hail and soil samples are collected. It can provide data support for revealing the influence of westerly monsoon on cloud precipitation process and atmospheric water cycle in Qilian Mountains.
FU Danhong
This data set is a sub data set of the comprehensive observation data set of cloud precipitation process, which is derived from the field observation test of cloud precipitation physical process carried out in Nyingchi area from 2019 to 2021. The observation instruments include Ka band millimeter wave cloud radar, micro rain radar and raindrop spectrometer. The observation elements of Ka band milliwave Cloud Radar include fixed-point vertical observation, RHI scanning observation and volume scanning observation data, The observation elements of micro rain radar include particle spectrum, liquid water content and precipitation intensity. The observation elements of raindrop spectrometer include particle spectrum and precipitation intensity. This data set can provide data support for the study of the formation mechanism and change trend of cloud precipitation physical process in Southeast Tibet and the response mechanism to westerly monsoon change.
FU Danhong
The Central Asia Reanalysis (CAR) dataset is generated based on the Weather Research and Forecast (WRF) model version 4.1.2 and WRF Data Assimilation (WRFDA) Version 4.1.2. Variables include temperature,, pressure, wind speed, precipitation and radiation. The reanalysis is established through cyclic assimilation, which performs data assimilation every 6 hours by 3DVAR. The assimilated data include conventional atmospheric observation and satellite radiation data. The main source of conventional data is Global Teleconnection System (GTS), including surface station, automatic station, radiosonde and aircraft report, and the observation elements include temperature, air pressure, wind speed and humidity. Satellite observations include retrievals and radiation data, The retrievals are mainly atmospheric motion vectors from polar orbiting meteorological satellites (NOAA-18, NOAA-19, MetOP-A and MetOP-B) and resampled to a horizontal resolution of 54km; the radiation data includes microwave radiation from MSU, AMSU and MHS and HIRS infrared radiation data. The simulation applies nesting with a horizontal resolution of 27km and 9km respectively, a total of 38 layers in the vertical direction and a top of the model layer of 10hPa. The lateral boundary conditions of the model are provided by ERA-Interim every 6 hours. The physical schemes used in the model are Thompson microphysics scheme, CAM radiation scheme, MYJ boundary layer scheme, Grell convection scheme and Noah land surface model. The data covers five countries in Central Asia, including Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan and Uzbekistan, as well as lakes in Central Asia, such as Caspian Sea, Aral Sea, Balkash lake and Isaac lake, which can be used for the study of climate, ecology and hydrology in the region. Compared with gauge-based precipitation in Central Asia, the simulation by CAR shows similar performance with MSWEP ( a merged product) and outperforms ERA5 and ERA-Interim.
YAO Yao
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
Simulation results of four cmip6 models in 2015-2100 under the scenario of shared socio-economic path (SSP) 5-8.5. The selection standard is that the resolution of the four modes is less than 1 °, and there are daily data. Eight variables representing extreme climate are extracted from the original simulation results, which are the extremely high value of daily maximum temperature (TXX), the extremely high value of daily minimum temperature (TNX), the extremely low value of daily maximum temperature (TxN), the extremely low value of daily minimum temperature (TNN), the number of continuous dry days (CDD), the number of continuous wet days (CWD), precipitation intensity (SDII) and the number of heavy precipitation days (r20mm). The time resolution of the data is years, the spatial range is the Qinghai Tibet Plateau, and the time range is 2015-2100.
ZHANG Ran ZHANG Ran
1) This data is the aridity index data calculated based on the latest simulation results of 22 cmip6 coupled global climate models; 2) The calculation formula is p / PET (ratio of precipitation to potential evapotranspiration), and the calculation of pet is based on PM formula; 3) The monthly data of the Great Lakes region of Central Asia from January 1900 to December 2100, including ssp2-4.5 and ssp5-8.5, with a resolution of 1 degree * 1 degree; 4) The data can be used to analyze the distribution and evolution of dry and wet pattern in the Great Lakes region of Central Asia under medium and high emission scenarios in the future. The data has been converted into 3-mongth running means.
HUA Lijuan
The observation data set of field meteorological stations in Central Asia and Western Asia (2019-2020) includes the monthly meteorological data of 12 field meteorological stations in Kazakhstan (5 stations), Kyrgyzstan (1 station), Tajikistan (3 stations), Uzbekistan (1 station) and Iran (2 stations), involving 21 observation indicators: Monthly average temperature (TA), monthly average pressure (PA) Monthly average relative humidity (RH), monthly total rainfall (PR), monthly average wind speed (WS), monthly average wind direction (WD), 0cm monthly average soil temperature (TS1), 5cm monthly average soil temperature (TS2), 10cm monthly average soil temperature (Ts3), 15cm monthly average soil temperature (ts4), 20cm monthly average soil temperature (ts5), 40cm monthly average soil temperature (TS6) 60cm monthly average soil temperature (ts7), 100cm monthly average soil temperature (ts8), monthly total solar radiation (SR), monthly total reflected radiation (GR), monthly total ultraviolet radiation (UVR), monthly total net radiation (NR), monthly total photosynthetic effective radiation (PAR), monthly total soil heat flux (HF) and monthly total sunshine duration (SD). The 12 field stations cover farmland, forest, grassland, desert, desert, wetland, plateau, mountain and other different ecosystem types. The data length starts from October 2019 to December 2020. The original meteorological data collected by the ground meteorological observation station is obtained after format conversion after screening and review, and the data quality is good. Central Asia has diverse climate types, fragile ecological environment and frequent meteorological disasters. The establishment of this data set provides data support for long-term research in the fields of ecological environment monitoring, disaster prevention and reduction, climate change and ecological environment in Central Asia. At present, it has been applied in the research of ecological environment monitoring in Central Asia.
LI Yaoming LI Yaoming
1) Data content (including elements and significance): 19 stations of Alpine network (Southeast Tibet station, Namuco station, Everest station, mustage station, Ali station, Golmud station, Tianshan station, Qilian mountain station, Ruoergai station (2 points in total, Northwest Institute and Chengdu Institute of Biology), Yulong Snow Mountain station and Naqu station (including stations, Qinghai Tibet Institute, Northwest Institute and Geography Institute), Haibei Station, Sanjiangyuan station, Shenza station,, Lhasa station and Qinghai Lake Station) meteorological observation data set of Qinghai Tibet Plateau in 2020 (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and flux) 2) Data source and processing method: Excel format for field observation of 19 stations of Alpine network 3) Data quality description: Daily resolution of the station 4) Data application achievements and prospects: Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data. In addition, the data set is an update of the meteorological data of the surface environment and observation network in China's high and cold regions (2019).
ZHU Liping
This data set is the version 2 of "High temporal and spatial resolution precipitation data of Upper Brahmaputra River Basin (1981-2016) ", with additional data from 2017 to 2019. This data set describes the temporal and spatial distribution of precipitation in the Upper Brahmaputra River Basin. We integrate (CMA, GLDAS, ITP-Forcing, MERRA2, TRMM) five sets of reanalysis precipitation products and satellite precipitation products, and combine the observation precipitation of 9 national meteorological stations from China Meteorological Administration (CMA) and 166 rain gauges of the Ministry of Water Resources (MWR) in the basin. The time range is 1981-2019, the time resolution is 3 hours, the spatial resolution is 5 km, and the unit is mm/h. The data will provide better data support for the study of Upper Brahmaputra River Basin, and can be used to study the response of hydrological process to climate change. Please refer to the instruction document uploaded with the data for specific usage information.
WANG Yuanwei, WANG Lei, LI Xiuping, ZHOU Jing
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
1) Data content (including elements and significance): the data includes the daily values of air temperature (℃), precipitation (mm), relative humidity (%), wind speed (M / s) and radiation (w / m2) 2) Data source and processing method; Air temperature, relative humidity, radiation and wind speed are daily mean values, and precipitation is daily cumulative value; Data collection location: 29 ° 39 ′ 25.2 ″ n near the forest line on the east slope of Sejila Mountain; 94°42′25.62″E; 4390m; The underlying surface is natural grassland; Collector model Campbell Co CR1000, acquisition time: 10 minutes. Digital automatic data acquisition. The temperature and relative humidity instrument probe is hmp155a; The wind speed sensor is 05103; The precipitation is te525mm; The radiation is li200x; 3) Data quality description; The original data of air temperature, relative humidity and wind speed are the average value of 10 minutes, and the precipitation is the cumulative value of 10 minutes; The daily average temperature, relative humidity, precipitation and wind speed are obtained by arithmetic average or summation. Due to the limitation of the sensor, the precipitation in winter may have a certain error. 4) Data application achievements and prospects: this data is the update of the existing data "Sejila Mountain meteorological data (2007-2017)" and "basic meteorological data of Sejila east slope forest line of South Tibet station of Chinese Academy of Sciences (2018)". The data time scale span is large, which is convenient for scientists or graduate students in Atmospheric Physics, ecology and atmospheric environment. This data will be updated from time to time every year.
Luo Lun
This data is obtained from the automatic weather station of Nam Co Station for Multisphere Observation and Research, Chinese Academy of Sciences. Geographical coordinates are 30.77° N, 90.96° E, and the altitude is 4730m, and the precipitation data have been corrected. Data set elements include temperature, precipitation, relative humidity, wind speed, total radiation and air pressure. The time range is from January 1st, 2019 to December 29th, 2020. During the monitoring period, the data is stable and continuous. Through the analysis of meteorological data, it is important to understand the local climate change in the region. At the same time, this data has a wide application prospect and can serve graduate students and scientists with backgrounds such as atmospheric science, hydrology, climatology, physical geography and ecology.
WANG Junbo
The meteorological data are the basic meteorological data such as air temperature, relative humidity, wind speed, precipitation and air pressure observed in the observation field of Southeast Tibet station of Chinese Academy of Sciences (94.738286 ° e, 29.76562 ° n, 3326m), and the underlying surface is forest grassland. The time resolution of the original data is 10min, the air temperature, relative humidity, wind speed and air pressure are calculated by arithmetic mean, and the precipitation is the daily cumulative value. The meteorological station was set up at the end of 2006 and the probes were replaced in August 2020. Please note that the models of instrument probes before and after the update are as follows: the model of temperature and humidity probe was changed from HMP45C to hmp155; The model of air pressure probe is changed from PTB220 to ptb110; The model of wind speed sensor is changed from 034b to 0513, and the model of rain gauge sensor is rg13h The data can be used by students and researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from South East Tibetan Plateau station for integrated observation and research of alpine environment, CAS)
Luo Lun
1)The data includes average rainfall erosivity raster data for 65 countries, with a spatial resolution of 1 kilometers. 2)The 0.5°×0.5° grid daily rainfall data generated by the Climate Prediction Center (CPC) based on global site data was used to calculate the rainfall erosivity R factor of 20 countries in key regions. 3)The R value was calculated using the daily rainfall data from 2358 weather stations of the China Meteorological Administration from 1986 to 2015, and the R value calculated by establishing the CPC data source was reviewed and revised. The quality of the finally obtained data was good . 4)Rainfall erosivity R factor is used as the driving factor of the CSLE model, and its data is the basis of soil erosion simulation and spatial pattern analysis in 65 countries, and it is of great importance for the study of soil erosion mechanism.
ZHANG Wenbo
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
1)The datase includes a 30-year (1986-2015) average rainfall erosivity raster data for 20 countries in key regions, with a spatial resolution of 300 meters. 2)The 0.5°×0.5° grid daily rainfall data generated by the Climate Prediction Center (CPC) based on global site data was used to calculate the rainfall erosivity R factor of 20 countries in key regions. 3)The daily rainfall data of 2358 weather stations nationwide from China Meteorological Administration from 1986 to 2015 was used to calculate the R value, and the R value calculated by establishing the CPC data source was rechecked and verified. It is found that the R value calculated by the CPC data system was low, and then it was revised, and the final data obtained was of good quality. 4)Rainfall erosivity R factor can be used as the driving factor of the CSLE model, and the data is of great significance for the simulation of soil erosion in 20 countries in key regions and the analysis of its spatial pattern.
ZHANG Wenbo
This data includes the image data of the second comprehensive field scientific investigation of the Qinghai Tibet Plateau. The image data includes the sample plot photos of the quadrats collected in the nature reserve during the scientific research, the images of forest ecosystem, grassland ecosystem and lake ecosystem in the nature reserve in Northwest Yunnan and Western Sichuan, the vegetation situation, wildlife habitat, and the data of animals, plants and fungi in the reserve. In addition, the image data also includes the sample collection process of the scientific research, the household survey of the scientific research team in the community survey and the image data of the interview with the local protection department. The data comes from UAV and camera shooting, which can provide evidence and reference for scientific research.
SU Xukun
This data set is the result of dynamic downscaling simulation of CORDEX region 8 (Central Asia) using WRF model driven by MPI-ESM-HR1.2 model data in CMIP6 plan. The data include 2m temperature (variable T2) and precipitation and precipitation was divided into convective (variable RAINC) and non-convective (variable RAINNC) precipitation. The time period includes historical test (1995-2014), near future (2021-2040) and medium future (2041-2060). The future time period includes SSP1-2.6 and SSP5-8.5. The time resolution of the simulation is once every 6 hours, the spatial resolution is 25km, the number of vertical layers is 51, a whole year in 1994 is used as spin up, the SST update is used, and the parameterized scheme combination with good performance in this area is selected. The data set can better reflect the future climate change characteristics of Central Asia and the Qinghai Tibet Plateau, and provide guidance for relevant countries to adapt to climate change.
LUO Yong, ZHOU Jiewei, SHI Wen
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn