This phenological data is based on the MOD13A2 data of the Qinghai Tibet Plateau from 2000 to 2015 (with a temporal resolution of 16 days and a spatial resolution of 1km). The NDVI curve is fitted using the segmented Gaussian function in the TIMESAT software. The spring phenology, autumn phenology and the length of the growth season are extracted using the dynamic threshold method. The thresholds of spring phenology and autumn phenology are set to 0.2 and 0.7 respectively. The phenological data were masked. Among them, the mask rules are: 1) The maximum value of NDVI must be met between June and September; 2) The average value of NDVI from June to September shall not be less than 0.2; 3) The average NDVI in winter shall not exceed 0.3.
ZU Jiaxing , ZHANG Yangjian
This dataset is the growing season NDVI and vegetation phenology dataset of the Tibetan Plateau during during the past 20 years (2001-2020). The data source is MODIS (MOD13A2, Collection 6) products, and the spatial resolution is 1km. The dataset includes: the average NDVI during the growing season (May-September), the start date of the growing season (SOS), the end date of the growing season (EOS) and the duration of the growing season (DOS) for each year from 2001 to 2020. Two methods were used to extract vegetation phenology: dynamic threshold approach and double logistic function method. The data format is TIFF and the projection is Sphere_ ARC_ INFO_ Lambert_ Azimuthal_ Equal_ Area.
WANG Taihua, YANG Dawen
This data includes the distribution data of soil bacteria in Namco region of the Qinghai Tibet Plateau, which can be used to explore the seasonal impact of fencing and grazing on soil microorganisms in Namco region. The sample was collected from May to September 2015, and the soil samples were stored in ice bags and transported back to the Ecological Laboratory of Beijing Institute of Qinghai Tibet Plateau Research; This data is the result of amplification sequencing, using MoBio Powersoil ™ Soil DNA was extracted with DNA isolation kit, and the primers were 515F (5 '- GTGCCAAGCGCCGGTAA-3') and 806R (5'GGACTACNVGGGTWTCTAAT-3 '). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and then the similarity between sequences is calculated, and the sequences with a similarity of more than 97% are clustered into an OTU. The Greengenes reference library is used for sequence alignment to remove the sequence that only appears once in the database. The soil moisture content and soil temperature were measured by a soil hygrometer, and the soil pH was measured by a pH meter (Sartorius PB-10, Germany). The soil nitrate nitrogen (NO3 −) and ammonium nitrogen (NH4+) concentrations were extracted with 2 M KCl (soil/solution, 1:5), and analyzed with a Smartchem200 discrete automatic analyzer. This data set is of great significance to the study of soil microbial diversity in arid and semi-arid grasslands.
KONG Weidong
Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.
KONG Weidong
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
In this data set, the effects of different proportions of oat grass and natural grass on digestion and metabolism of grazing Tibetan sheep in summer were studied with four proportions of oat grass and natural grass in Qilian alpine meadow. It includes dry matter (DM), organic matter (OM), crude protein (CP), crude fat (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) intake and digestibility of grazing Tibetan sheep. Through the analysis of data, the natural forage in summer can meet the growth and metabolism of Tibetan sheep, and it is not suitable to feed oat grass.
PENG Zechen
Data files are in 7Z compressed package format, which can be decompressed and opened by 7-zip software. There are three files in total, namely file 1, text version of grassland Degradation classification on The Qinghai-Tibet Plateau, file type is Word, and file 2, named As Map, with seven maps in total. The type of the image is PNG, and the name of the image is the trend rate of average NDVI change in the growing season of grass, grassland, meadow, grassland, alpine vegetation, desert and swamp on the Tibetan Plateau from 2010 to 2019. File 3. The folder named as data is filled with pictures. There are 7 kinds of pictures with the same names as above.
ZHOU Huakun
Carbon, nitrogen, phosphorus, sulfur and potassium are important basic life elements of ecosystem. It plays an important role in revealing the impact of its regional variation and spatial pattern on human activities and the sustainable development of ecosystem in the future. The Qinghai Tibet Plateau has unique alpine vegetation types and rich vertical zone landforms and surface cover types. The biogeographic pattern of surface elements (carbon, nitrogen, phosphorus, sulfur, potassium) is an important manifestation of the coupling of carbon, nitrogen and water cycle processes and related mechanisms of alpine ecosystems. This dataset focuses on the distribution pattern and spatial variation of surface materials (plant leaf branch stem root and litter) in the complex ecosystem of the Water tower area of Qinghai Tibet Plateau and Himalayan Mountains, in order to provide data support for regional model simulation and ecological management.
LI Mingxu
The dataset includes climate suitability zonation, climate and soil suitability zonation and climate and soil terrain suitability zonation dataset of 8 forages. The dataset can provide important data support for artificial grassland construction. Based on the climate index model and maximum entropy model, the climate suitability index of each pasture was constructed by using the temperature, precipitation data of the last 40 years and elevation data, and considering the soil type, soil organic matter content and topographic factors, the planting zonation of eight pasture species was established in Tibet. Eight forages are important forage resources in alpine areas. The accuracy of climate suitability index was ensured by field investigation, and the practicability of dataset of pasture planting zonation was ensured by comprehensive consideration of climate factors and soil topographic factors. Artificial grassland planting is not only the main means of ecological restoration of degraded grassland, but also an important part of grassland production structure adjustment. Reasonable and scientific grass planting is the foundation. The dataset of forage planting zonation has an important application prospect in the implementation of major ecological projects and the scientific management of grassland.
ZHOU Huakun , SHI Mingming , ZHOU Bingrong , SU Wenjiang , SUN Weijie
The dataset includes climate suitability zonation, climate and soil suitability zonation and climate and soil terrain suitability zonation dataset of 8 forages. The dataset can provide important data support for artificial grassland construction. Based on the climate index model and maximum entropy model, the climate suitability index of each pasture was constructed by using the temperature, precipitation data of the last 40 years and elevation data, and considering the soil type, soil organic matter content and topographic factors, the planting zonation of eight pasture species was established in Qinghai. Eight forages are important forage resources in alpine areas. The accuracy of climate suitability index was ensured by field investigation, and the practicability of dataset of pasture planting zonation was ensured by comprehensive consideration of climate factors and soil topographic factors. Artificial grassland planting is not only the main means of ecological restoration of degraded grassland, but also an important part of grassland production structure adjustment. Reasonable and scientific grass planting is the foundation. The dataset of forage planting zonation has an important application prospect in the implementation of major ecological projects and the scientific management of grassland.
ZHOU Huakun , SU Wenjiang , ZHOU Bingrong , SHI Mingming , ZHAO Huifang
The data set is the measured data, which is obtained through the three-year field survey from 2019 to 2021. There are 59 sample points and 590 quadrats in total. It includes the grassland growth status of different grassland types in 14 typical counties in Qilian Mountain Area (Aksai, Dachaidan, Delingha, Dulan, Gangcha, Gaotai, Golmud, Huangcheng Town, Mangya City, Menyuan County, Qilian County, Shandan County, Sunan County and Wulan county). The indicators include species diversity, dominant species, edible forages, poisonous weeds Dry weight of edible forage and dry weight of poisonous weeds. This data set investigates edible forage and poisonous weeds separately, which can provide accurate data support for calculating effective livestock carrying capacity.
PENG Zechen
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
ZHOU Defu, ZOU Defu, ZOU Defu, Zhao Lin, ZHAO Lin, Liu Guangyue, LIU Guangyue, Du Erji, DU Erji, LI Zhibin , LI Zhibin, Wu Tonghua, WU Xiaodong, CHEN Jie CHEN Jie
Using the quadrat survey method, natural grassland, fenced natural grassland and artificial grassland are arranged in the source area of rivers and lakes in Tibet to investigate grassland type, coverage, species composition, aboveground biomass, soil temperature, soil bulk density, soil water content, soil texture, soil pH, soil organic matter, soil total P and soil total K, The characteristics of vegetation community and soil quality under different grassland utilization modes were compared and analyzed to study the impact of grassland utilization on vegetation and soil environment. The data collection year is from August 2019 to August 2021, and the collection location is the source area of Jianghu and surrounding areas. The altitude of the sample point is the GPS recorded data, the vegetation type is the mapping of the sample point in the vegetation map of China, the soil temperature and humidity is the soil 4 parameter speedometer data, the soil bulk density is the measured data of the sample point, the number of herbaceous species, grassland coverage and aboveground biomass are the sample survey data, and the soil particle size, organic matter and nutrient content are the sample laboratory analysis data.
XU Zengrang, JIN Mingming , QIAO Tian
The data were collected from the sample plot of Haibei Alpine Meadow Ecosystem Research Station (101°19′E,37°36′N,3250m above sea level), which is located in the east section of Lenglongling, the North Branch of Qilian Mountain in the northeast corner of Qinghai Tibet Plateau. Alpine meadow is the main vegetation type in this area. The data recorded the light, air temperature and humidity, wind temperature and wind speed above the alpine plant canopy. The radiation intensity above the alpine plant canopy was recorded by LI-190R photosynthetic effective radiation sensor (LI-COR, Lincoln NE, USA) and LR8515 data collector (Hioki E. E. Co., Nagano, Japan), and the recording interval was once per second. S580-EX temperature and humidity recorder (Shenzhen Huatu) and universal anemometer are used (Beijing Tianjianhuayi) record the daily dynamics of air temperature and humidity, wind temperature and wind speed every three seconds. The recording time is from 10:00 on July 13 to 21:00 on August 17, Beijing time. Due to the need to use USB storage time and replace the battery every day, 3-5min of data is missing every day, and the missing time period is not fixed. At present, the data has not been published. Through research on the data The data can further explore the microenvironment of alpine plant leaves and its possible impact on leaf physiological response.
TANG Yanhong, ZHENG Tianyu
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
1) Data content: data set of soil physical and chemical properties compared inside and outside the grassland fence project, including quadrat number, grassland type, survey County, survey location, project type, sampling time, project start time, duration, "longitude (° E)", "latitude (° n)", "altitude (m)", "pH (0-15cm)", "pH (15-30cm)", "SOM (0-15cm (‰))," SOM 15-30cm (‰)) "TN(0-15(‰))"、"TN(15-30(‰))"、"TP(0-15(‰))"、"TP(15-30(‰))" 2) Data source: field sampling data 3) Data quality: high quality 4) Data application prospect: the grassland fence project on the Qinghai Tibet Plateau will achieve remarkable results in protecting grassland and restoring regional vegetation productivity. The implementation of the project provides a broader space for the development of regional animal husbandry and ensures the stable growth of local farmers' and herdsmen's income and regional economy. In addition, the implementation of the project ensures and supports the normal production and life of herdsmen in Tibet, and realizes the grassland protection in the pastoral area and the stable development of herdsmen's animal husbandry production, which is of great significance to maintaining the overall stability of Tibetan society and promoting the sound and rapid development of Tibet
HONG Jiangtao, WANG Xiaodan
This data set includes the PM2.5 mass concentration of atmospheric aerosol particles at Southeast Tibet station, Ali station, mostag station, Everest station and Namuco station (unit: mm) μ g/m3)。 Aerosol PM2.5 fine particles refer to particles with aerodynamic equivalent diameter less than or equal to 2.5 microns in the ambient air. It can be suspended in the air for a long time, which has an important impact on air quality and visibility. The higher its concentration in the air, the more serious the air pollution. The concentration characteristic data of PM2.5 is output at the frequency of obtaining a set of data every 5 minutes, which can realize the analysis of aerosol mass concentration at different time scales such as hour, day and night, season and interannual, which provides the analysis of changes and influencing factors of aerosol mass concentration at different locations in the Qinghai Tibet plateau at different time scales, as well as the evaluation of local air quality, It provides important data support. This data is an update of the published data set of PM2.5 concentration of aerosol particles at different stations on the Qinghai Tibet Plateau (2018 and 2019).
WU Guangjian
This data set includes two infrared cameras and environmental parameter data sets of three terrestrial vertebrates deployed in Qilian Mountain reserve. The equipment is deployed near Sidalong in Qilian Mountain reserve, with a time span of (2020.8-2021.10). Due to equipment maintenance and insufficient illumination, some data are discontinuous, but the data of the two equipment can complement each other and reconstruct all the information of observation points in Qilian Mountain reserve from August 2020 to October 2021. One of the two devices is equipped with an infrared camera, which collects 4994 photos, which can be matched with the above sensor photos, or the ecological factor information before and after taking photos. 1. Wild animals and temperature, humidity, light, pressure and network signal strength information in Qilian Mountain reserve. The acquisition interval is once every half an hour 2. Data source: "development of terrestrial vertebrate monitoring equipment", 2016yfc0500104, completed by: Institute of zoology, Chinese Academy of Sciences, raw data, unprocessed 3. The sensor data acquisition interval is every half an hour. The temperature accuracy is plus or minus 0.1 degrees and the humidity accuracy is plus or minus 0.5%. The photo data is divided into trigger and timing. The trigger data is generally triggered by wild animals in the field of vision of the infrared camera; the timing photo data is dynamically adjusted according to the battery power, and the acquisition interval is between 1-12 hours. 4. This data can be used to record the ambient temperature in the reserve. Combined with the infrared camera data, it can be used to analyze the activity rhythm of wild animals, coexistence analysis and distribution limiting factors.
QIAO Huijie
The demonstration data set of automatic plant phenology observer at Heihe Daman station is the corn phenology observation data set collected by the plant phenology observer at Heihe Daman station. The plant phenology observer can collect phenology images through the phenology observation hardware system based on multispectral imager and wireless transmission module, and through online calculation and visual image management Phenological information processing and system control software can realize the automatic identification of key phenological periods at individual and community scales. Through the data collected by the automatic plant phenology observer, the indexes such as vegetation greenness index and NDVI index can be calculated, the change process of key plant phenology can be monitored, and the change law of vegetation phenology can be reflected.
SONG Chuangye, GAO Liyao, WU Dongxiu
This data includes the image data of the second comprehensive field scientific investigation of the Qinghai Tibet Plateau. The image data includes the sample plot photos of the quadrats collected in the nature reserve during the scientific research, the images of forest ecosystem, grassland ecosystem and lake ecosystem in the nature reserve in Northwest Yunnan and Western Sichuan, the vegetation situation, wildlife habitat, and the data of animals, plants and fungi in the reserve. In addition, the image data also includes the sample collection process of the scientific research, the household survey of the scientific research team in the community survey and the image data of the interview with the local protection department. The data comes from UAV and camera shooting, which can provide evidence and reference for scientific research.
SU Xukun
This vegetation water content data set is derived from the ground synchronous observation in the Luanhe River Basin soil moisture remote sensing experiment, including 55 sampled plots.The vegetation types involved in these sampled plots include grass, corn, potatoes, naked oats and carrots. The data measurement time is from September 13, 2018 to September 26, 2018.
ZHENG Xingming, JIANG Tao
1) Data content It includes the observation year, latitude and longitude, altitude, ecosystem type and soil layer (soc0-100 (kgcm-2); 0-100 represents soil layer), underground biomass content. 2) Data sources This part of the data is obtained from the literature, specific literature sources refer to the documentation. 3) Data quality description The data cover a wide range, including comprehensive indicators, showing the content of soil organic carbon under different soil layers, with high integrity and accuracy, which can meet the estimation of soil carbon storage of grassland in Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect of soil and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
1) Data content It includes the observation year, longitude and latitude, ecosystem type, annual rainfall, drought index, annual net primary productivity, aboveground biomass, underground biomass and other data. 2) Data sources One part is from literature (1980-1995), the other part is from field sampling (2005-2006). 3) Data quality description The data has a long observation year, a large time span, a wide coverage, and many indicators, which has high integrity and accuracy, and can meet the estimation of grassland carbon storage in the Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
Dataset of biodiversity survey in the urbanized area of Tibetan Plateau mainly includes the survey datasets of waterbird diversity and vegetation diversity in the Qinghai Lake Basin. From July to August in 2020, 24 waterbird observation sites were set up around Qinghai Lake, such as sites located in Ganzi River wetland and Buha River estuary, etc., and the species and population of waterbirds were recorded by telescope observations and drones. Besides, 28 plots (1m×1m) were selected based on the local vegetation types, and elements of vegetation types, frequency and biomass were recorded. Our dataset will support the study of optimizing the ecological security barrier system in the key urbanized areas of the Tibetan Plateau.
CHEN Kelong, CHEN Zhirong
Carrying capacity refers to the carrying capacity of grassland calculated by actual carrying capacity and reasonable carrying capacity, that is, all overloading, balanced and non overloading. This data set includes two products: Grassland carrying capacity pressure index and grassland livestock balance index. Grassland carrying capacity pressure index = actual carrying capacity / reasonable carrying capacity, and grassland livestock balance index = (actual carrying capacity - reasonable carrying capacity) × 100% / reasonable carrying capacity, the actual carrying capacity data comes from the Qinghai Tibet Plateau actual carrying capacity data set (2000-2019), and the reasonable carrying capacity data comes from the Qinghai Tibet Plateau reasonable carrying capacity data set (2000-2019). This data set can analyze the temporal and spatial variation characteristics of livestock carrying status in the Qinghai Tibet Plateau, extract overgrazing areas, and evaluate the overload intensity of the Qinghai Tibet Plateau, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.
LIU Bintao
Actual carrying capacity refers to the actual number of livestock that can be raised on a certain area of grassland during a certain utilization period. The actual carrying capacity is obtained through statistical yearbooks from various provinces (regions) and cities (prefectures) on the Qinghai Tibet Plateau, as well as statistical data provided by animal husbandry management departments. There are multiple statistical calibers in the statistical data, such as inventory, output, output rate, and year-end livestock quantity. This dataset uniformly adopts the year-end livestock inventory as the calculation standard for actual carrying capacity based on the statistical data of each region. A multiple linear regression was conducted using the actual carrying capacity in the statistical yearbook with population density, NPP, and terrain undulation to establish a spatial model for actual carrying capacity. Grid data of actual carrying capacity (sheep units, MU/km2) were obtained, with a time series from 2000 to 2019 and a spatial resolution of 250 meters. Using statistical data from the core pastoral areas of the Qinghai Tibet Plateau, including Guoluo Prefecture, Yushu Prefecture, Changdu City, Nagqu City, Aba Prefecture, Ganzi Prefecture, and Gannan Prefecture, it was verified that the average absolute error of spatialization was 27.48 MU/km2, and the average relative error was 13.79%. This dataset can analyze the spatiotemporal variation characteristics of actual livestock carrying capacity on the Qinghai Tibet Plateau, evaluate the carrying characteristics of grasslands on the Qinghai Tibet Plateau, extract transitional grazing areas, and has important application value for ecological protection, monitoring, and early warning on the Qinghai Tibet Plateau.
LIU Bintao
Reasonable carrying capacity, also known as theoretical carrying capacity, refers to the maximum number of domestic animals that can be carried by a certain grassland area in a certain period of time under the premise of moderate grazing (or mowing) and maintaining sustainable production of grassland to meet the needs of normal growth, reproduction and production of livestock. Based on the MODIS inversion data of forage yield (fresh weight, kg / hm2), the reasonable carrying capacity of grassland (sheep unit, mu / km2) was evaluated according to the code for calculation of grassland carrying capacity and grass livestock balance (DB 51 / t1480-2012) and calculation of reasonable carrying capacity of natural grassland (NY / T 635-2015), The time series is 2000-2019, and the spatial resolution is 250m. This data set can analyze the temporal and spatial variation characteristics of the theoretical carrying capacity under the condition of rational utilization of grassland in the Qinghai Tibet Plateau, evaluate the carrying capacity characteristics of grassland in the Qinghai Tibet Plateau, and extract the overgrazing areas, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.
LIU Bintao
Grassland yield is an important ecological parameter of grassland, which is an important basis for monitoring grassland productivity, Estimating Grassland reasonable carrying capacity and evaluating grassland carrying status. Based on the grassland data collected in July and August, MODIS NDVI, precipitation and terrain parameters, multivariate statistical equations were established to invert the total grass yield (kg / hm2) and edible grass yield (kg / hm2). The time series is 2000-2019, and the spatial resolution is 250 meters. Based on the data of 50 quadrats distributed in Sichuan, Tibet, Qinghai, Gansu and other regions, the results show that the average absolute error of total grass yield is 734.75kg/hm2, and the average relative error is 24.85%. The average absolute error of edible grass yield is 715.81kg/hm2, and the average relative error is 30.52%. Due to the complexity of grassland types, high spatial heterogeneity and scale mismatch between the measured grassland quadrats and MODIS image pixels, this accuracy can meet the requirements of remote sensing monitoring of grassland in large areas. This data set can analyze the spatiotemporal variation characteristics of grassland productivity in the Qinghai Tibet Plateau, evaluate the carrying capacity characteristics of grassland in the Qinghai Tibet Plateau, and extract the overgrazing areas, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.
LIU Bintao
The data of grassland resources in Kekexili area of Qinghai Province come from the comprehensive scientific investigation of Kekexili area from May to August 1990. The formation and evolution of flora characteristics are not only related to the evolution of plants, but also strictly restricted by the past and modern ecological conditions. Because of the high cold and drought, the flora of Kekexili area is relatively poor. The grassland in Kekexili area of Qinghai Province is a natural ecosystem which has not been disturbed by human beings. In this system, grass is the material basis for the survival and reproduction of all kinds of herbivorous wild animals and grazing livestock. Therefore, to understand and master the number, quality and distribution characteristics of grassland resources in this area is the basic condition for rational utilization of grassland resources and establishment of nature reserves.
FENG Zuojian
This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
ZHOU Guangsheng, JI Yuhe, LV Xiaomin, SONG Xingyang
Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
NIU Ben, ZHANG Xianzhou
This data is the data of automatic weather station (AWS, Campbell company) set up at the top of the mountain in the west slope of Sejila by the comprehensive observation and research station of Southeast Tibet alpine environment of Chinese Academy of Sciences in 2016. The geographical coordinates are 29.5919 n, 94.6102 e, with an altitude of 4640 m, and the underlying surface is alpine grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average of 30 minutes before October 2018, and an average of 10 minutes after that. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument model is rg3-m, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. In terms of data quality: the obvious abnormal values are eliminated, the battery is damaged due to snow in the first half of 2019, and the data is missing. The missing temperature data is corrected by using the temperature fitting regression of 43900 m at nearby stations, and the data is yellow. Please pay attention when using it; the monitoring of precipitation starts from August 2019. The data station is a high altitude meteorological station in Southeast Tibet, which will be updated from time to time. It can be used by scientific researchers studying ecology, climate, hydrology, glaciers, etc.
Luo Lun
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
The western and northeastern Yunnan is located in the southeast of the Qinghai Tibet Plateau. Previous genetic studies have shown that there are substantial genetic imprints of late Paleolithic human in this region, and these ancient genetic imprints are likely to spread further to the Qinghai Tibet Plateau. Therefore, the genetic study of the population in this area is helpful to clarify the migration history of early human settlement in the Qinghai Tibet Plateau. In this study, we studied the genetics of Dai people in different areas of Yunnan Province. The mitochondrial DNA hypervariable regions of 264 Dai individuals were sequenced by Sanger sequencing. Based on phylogenetic analysis, we control the quality of these data to ensure that there is no sample contamination and other quality problems. According to the revised Cambridge Reference Sequence, the variants were recorded. According to the phylogenetic tree of mitochondrial DNA in the world population (PhyloTree.org), each sample was allocated into certain haplogrop. Based on the published mtDNA data of Dai people in other areas, the maternal genetic structure and formation mechanism of Dai population were systematically studied. The results showed that there was a close genetic relationship among the Dai populations in different regions, and the haplogroups (F1a, M7B and B5a) shared by these populations could be traced back to southern China, suggesting that the Dai population might have originated in southern China and migrated southward to the mainland and Southeast Asia in the Iron or Bronze age. The genetic differentiation of the Dai population in different regions is consistent with the phenomenon that their language and culture have some differences, which indicates that the Dai people and the surrounding populations in the southward migration.
KONG Qingpeng
To investigate the paternal genetic structure of Tibetans from Shigatse, 434 male samples were collected from Shigatse, Tibet. Firstly, SNP genotyping was performed to allocate samples into haplogroups. To further evaluate the genetic diversity of the major Y-chromosomal haplogroup in Tibetan populations from Lhasa, eight commonly used Y-chromosomal STR (short tandem repeat) loci (DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393) were genotyped using fluorescence-labeled primers with an ABI 3130XL Genetic Analyzer (Applied Biosystems, USA). The results indicated that haplogroup O-M175 displayed highest frequency in Shigatse Tibetans (47.00%, the majority of its sublineages were O2-M122), followed by haplogroups D-M174 (40.78%, with most of the samples belonging to D-P47 (20.97%) and D-N1(16.82%)). Another relatively rare lineages in Shigatse Tibetans were C-M217 (1.84%), R1a1- M17 (1.61%), N1-LLY22G (5.76%), Q-M242 (0.69%). In combination with the data from Lhasa that released in 2019, our Y chromosome data of Tibetans from different locations on the Tibetan Plateau will be very helpful to understanding the paternal genetic structure of Tibetans. Moreover, the genetic history of Tibetans can also be dissected by phylogeographic and coalescent analyses.
KONG Qingpeng, QI Xuebin
We obtained the whole genome variation data of 30 Tibetan individuals. The SNP typing of 30 samples was carried out by DNA array method, and about 700000 loci (including nuclear genome, mitochondrial DNA and Y chromosome) of each sample were obtained. First, after extracting genomic DNA, DNA amplification, enzymatic fragmentation, precipitation and re suspension were carried out. After the sample was incubated overnight and hybridized with beadchip, the DNA was annealed to obtain a site-specific 50 mer probe, covalently coupled with an Infinium bead type. Then Infinium XT was used to extend the enzyme base to give the allele specificity, and then fluorescent staining was carried out. The fluorescence intensity of the beads was detected by iSCAN system, and the Illumina software automatically performed the analysis and genotype recognition. Finally, the SNP typing results of each sample were obtained. Based on the above data, relevant biological information analysis (mainly including chip site quality control analysis, Y chromosome and mitochondrial DNA haplotype analysis) was carried out. This data is helpful to analyze the genetic structure of Tibetan population from the perspective of nuclear genome, Y chromosome and mitochondrial DNA. By comparing with the data of people around the plateau, we can trace the migration and settlement history of the plateau population comprehensively.
KONG Qingpeng
1) Data content: the data are field sampling data of fence project, including sample number, grassland type, survey County, survey location, project type, project start time, "longitude (° E)", "latitude (° n)", "altitude (m)", "total coverage (%)," average height (CM) ", aboveground biomass (g / m2), underground biomass (g / m2), and total biomass (g / m2), 2) Data source: field sampling data 3) Data quality: high quality. 4) Data application prospects: it will be of great significance for promoting the development of local animal husbandry and improving the local economic benefits by deeply exploring the grassland fence project on the Qinghai Tibet Plateau. In terms of the expected results, the Qinghai Tibet Plateau grassland fencing project will achieve remarkable results in protecting grassland and restoring regional vegetation productivity. The implementation of the project provides a broader space for the development of regional animal husbandry, and ensures the stable growth of local farmers and herdsmen's income and regional economy. In addition, the implementation of the project ensures and supports the normal production and life of Tibetan herdsmen, and realizes the stable development of grassland protection and animal husbandry production of herdsmen in the pastoral areas, which is of great significance for maintaining the overall stability of Tibet society and promoting the sound and rapid development of Tibet.
HONG Jiangtao, WANG Xiaodan
The content of this data set is the measurements of body weight and body size (body height, body length, chest circumference, tube circumference) of 11 representative yak populations in Qinghai pastoral area at 2018. All the metadata comes from the work of body weight monitoring of yaks in Qinghai pastoral area at 2018, by the Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Academy of Animal Husbandry and Veterinary Sciences. The data set is named by “Monitoring Data Set of Body Weights of Traditional Grazing Yaks in Qinghai Pastoral Area (2018)”, consisting of 11 worksheets. The names and contents of worksheets are as follows: 1. Haiyan-Halejing (167 yaks in halejing Mongolian Town, Haiyan County, Haibei Tibetan Autonomous Prefecture); 2. Qilian-Mole (69 yaks in Mole Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 3. Qilian-Yeniugou (42 yaks in Yeniugou Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 4. Qilian-Yanglong (104 yaks in Yanglong Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 5. Qilian-Ebao (28 yaks in Ebao Town, Qilian County, Haibei Tibetan Autonomous Prefecture); 6. Tianjun-Xinyuan (38 yaks in Xinyuan Town, Tianjun County, Haixi Mongolian and Tibetan Autonomous Prefecture); 7. Tianjun-Longmen (100 yaks in Longmen Town, Tianjun County, Haixi Mongolian and Tibetan Autonomous Prefecture); 8. Gande-Ganlong (36 yaks in Ganglong Town, Gande County, Guoluo Tibetan Autonomous Prefecture); 9. Guinan-Taxiu (70 yaks in Taxiu Town, Guinan County, Hainan Tibetan Autonomous Prefecture); 10. Henan-Kesheng (73 yaks in Kesheng Town, Henan Mongolian Autonomous Country, Huangnan Tibetan Autonomous Prefecture); 11. Ledu-Dala (50 yaks in Dala Town, Ledu District, Haidong City). This data set comprehensively evaluates the growth performance of yaks grazing in alpine meadow under the current ecological environment through the measurement of weight and body size data in the representative areas of Qinghai pastoral area. The data set can be compared with the growth characteristics of representative populations of Qinghai yaks measured in 1981 and 2008 recorded in 1983 and 2013, and the degradation index of growth performance of yaks grazing in Qinghai pastoral area can be obtained, which is helpful to assess the impact of ecological environment changes on the growth and production performance of grazing livestock.
JIA Gongxue, YANG Qien, Tianwei XU
This data is derived from the Supplementary Tables of the paper: Chen, F. H., Welker, F., Shen, C. C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S. E., Yu, T. L., Skinner, M. M., Stelzer, S., Dong, G. R., Fu, Q. M., Dong, G. H., Wang, J., Zhang, D. J., & Hublin, J. J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409-412. This research is another breakthrough made by academician Fahu Chen and his team over the years research of human activities and environmental adaptation on the Tibetan Plateau. The research team analyzed the newly discovered hominid mandible fossils in Xiahe County, Gansu Province, China, and identified it belongs to Denisovan of the Tibetan Plateau, which suggested to call Xiahe Denisovan. The team conducted a multidisciplinary analysis of the fossil, including chronology, physique morphology, molecular archaeology, living environment and human adaptation. It is the first Denisovan fossil found outside the Denisova Cave in the Altai Mountains and the earliest evidence of human activity on the Tibetan Plateau (160 kyr BP). This study provides key evidence for further study of Denisovans' physical characteristics and distribution in East Asia, it also provides evidence of a deep evolutionary history of these archaic hominins within the challenging environment of the Tibetan Plateau. This data contains 6 tables, table name and contents are as follows: t1: Distances in mm between meshes generated from CT versus photoscans (PS). t2: Measurements of the Xiahe mandible after reconstruction. t3: Comparative Dental metrics. t4: Comparative crown morphology. t5: Uniprot accession numbers for protein sequences of extant primates used in the phylogenetic analyses. t6: Specimen names and numbers.
CHEN Fahu
This data set is a database for the application of SWAT Model in the upper reaches of Heihe River and the source area of the Yellow River, mainly including soil and vegetation, and DEM. There are many parameters involved in soil and vegetation, including conventional soil physical and chemical parameters, vegetation parameters and biomass parameters. The determination method of parameter value includes sampling measurement, literature and other related databases, as well as calculation through related software. As the soil and vegetation database of SWAT model involves comprehensive parameters, most of them can also be used as reference for other ecological and hydrological models driving data besides SWAT model.
ZOU Songbing
Thematic data on desertification in Western Asia, includes two parts: Distribution Map of Sandy Land in Western Asia, Distribution Map of Grassland Degradation in Western Asia. The spatial resolution of the data is 30m. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences, the spatial resolution of data is 30 m. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101. The map of artificial oasis pattern in Amu river basin is based on Landsat TM and ETM image data in 2015. Firstly, with the help of eCognition software, the object-oriented classification is carried out. Secondly, the classification results are checked and corrected manually.
The data set includes the spatial distribution of grass yield in the Qinghai-Tibetan Plateau in 1980, 1990, 2000, 2010, and 2017. The gross primary productivity (GPP) of grassland in the Qinghai-Tibetan Plateau was simulated based on the ecological hydrological dynamic model VIP (vegetation interface process) with independent intellectual property of Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences. The net primary productivity (NPP) was estimated by empirical coefficient, and converted it into dry matter, and then the hay yield was estimated by root-shoot ratio. The spatial resolution is 1km. The data set will provide the basis for grassland resource management, development, utilization and the formulation of the strategy of "grass for livestock".
MO Xingguo
This dataset subsumes sustainable livestock carrying capacity in 2000, 2010, and 2018 and overgrazing rate in 1980, 1990, 2000, 2010, and 2017 at county level over Qinghai Tibet Plateau. Based on the NPP data simulated by VIP (vehicle interface process), an eco hydrological model with independent intellectual property of the institute of geographic sciences and nature resources research(IGSNRR), Chinese academy of Sciences(CAS), the grass yield data (1km resolution) is obtained. Grass yield is then calculated at county level, and corresponding sustainable livestock carring capacity is calculated according to the sustainable livestock capacity calculation standard of China(NY / T 635-2015). Overgrazing rate is calculated based on actual livestock carring capacity at county level.The dataset will provide reference for grassland restoration, management and utilization strategies.
MO Xingguo
The Pan Third Pole is sensitive to global climate change, its warming rate is more than twice of the global rate, and it is affected by the synergy of westerlies and monsoons. How to respond to climate change will have a profound impact on regional ecological security. However, the estimation of NPP by current products is still uncertain. For this reason, this product combines multi-source remote sensing data, including AVHRR NDVI, MODIS reflectivity data, a variety of climate variables (temperature, precipitation, radiation, VPD) and a large number of field measured data, and uses machine learning algorithm to retrieve the net primary production capacity of Pan third polar ecosystem.
WANG Tao
This data set is a spatial and temporal variation map of temperate grassland types in Eurasia, China regional classification map (1980S).The data is in TIF raster format, and the spatial resolution is 1km. The values of the three-level classification of thermal grassland are 1-8, respectively: :1- Temperate meadow grassland;2- Typical temperate grassland;3- Temperate desertification grassland;4- Temperate grassland desert;5- temperate desert and three non-temperate grassland types (6- alpine grassland, 7- other vegetation area, 8- non-vegetation area). Based on the data set of vegetation map of the people's Republic of China (1:1 000 000 000) hosted by the Institute of Botany, Chinese Academy of Sciences, and combined with historical and meteorological data, the vegetation map of the people's Republic of China contains 11 vegetation type groups, 55 vegetation types and 960 vegetation types in 1980s Based on the historical meteorological data from 1980 to 1989, combined with satellite data for further analysis and correction, and spatial interpolation calculation, we obtained the three-level classification of temperate grassland in China. The data can be used to analyze the spatial and temporal variation of temperate grassland in Eurasia.
TANG Jiakui
According to the characteristics of the Qinghai Tibet Plateau and the principles of scientificity, systematization, integrity, operability, measurability, conciseness and independence, the human activity intensity evaluation index system suitable for the Qinghai Tibet Plateau has been constructed, which mainly includes the main human activities such as agricultural and animal husbandry activities, industrial and mining development, urbanization development, tourism activities, major ecological engineering construction, pollutant discharge, etc, On the basis of remote sensing data, ground observation data, meteorological data and social statistical yearbook data, the positive and negative effects of human activities are quantitatively evaluated by AHP, and the intensity and change characteristics of human activities are comprehensively evaluated. The data can not only help to enhance the understanding of the role of human activities in the vegetation change in the sensitive areas of global change, but also provide theoretical basis for the sustainable development of social economy in the Qinghai Tibet Plateau, and provide scientific basis for protecting the ecological environment of the plateau and building a national ecological security barrier.
ZHANG Haiyan, XIN Liangjie, FAN Jiangwen, YUAN Xiu
Geographical distribution of major ecological protection and construction projects on the Tibetan plateau. There are four main projects, i.e. forest protection and construction project, grassland protection and construction project, desertification control project, soil erosion comprehensive control project. Processing method: classified summary, and the county as a unit of the regional distribution.
Da Wei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn