We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
SU Bo
This dataset contains the glacier outlines in Qilian Mountain Area in 2015. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2018 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2018, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2021. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2021 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2021, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
This dataset includes the glacier elevation change data in the High Mountain Asia (HMA) region from 2018 to 2020 derived from Ice, Cloud and land Elevation Satellite (ICESat-2) data. The glacial elevation changes in the High Mountain Asia region were calculated using ICESat-2 data (2018-2020) and SRTM DEM data in 2000, taking into account the inhomogeneity of glacier changes and area distribution at different elevations and slopes (weighted average of glacier area of elevation and slope bins in 1°×1° grid ). The dataset can provide the annual change information of glacier elevation in the High Mountain Asia region from 2018 to 2020 relative to 2000. These data can be used for studies of climate change in the High Mountain Asia.
SHEN Cong , JIA Li
This dataset includes the glacier elevation change data in the High Mountain Asia (HMA) region from 2003 to 2008 derived from Ice, Cloud and land Elevation Satellite (ICESat-1) data. The glacial elevation changes in the High Mountain Asia region were calculated using ICESat-1 data (2003-2008) and SRTM DEM data in 2000, taking into account the inhomogeneity of glacier changes and area distribution at different elevations and slopes (weighted average of glacier area of elevation and slope bins in 1°×1° grid ). The dataset can provide the annual change information of glacier elevation in the High Mountain Asia region from 2003 to 2008 relative to 2000. These data can be used for studies of climate change in the High Mountain Asia.
SHEN Cong , JIA Li
1) The data included the thickness, coordinates and elevation of Xiaodongkemadi glacier and was measured from July 26 to 28, 2021; 2) The data was measured by the ground penetrating radar with working frequency of 100MHz developed by China Institute of Water Resources and Hydropower Research. The thickness of the glacier was obtained through the processing and analysis of the radar echo image. The dielectric constant of the ice was 3.2, and the coordinates and elevation of the measuring points were measured by the RTK system; 3) The data can be used to study the changes of glacier thickness, mass balance , runoff and so on.
FU Hui
Glacier thickness variation is a key parameter for glacier change monitoring. Historical high-resolution KH-9 images (1974), SRTM DEM data products (2000), TanDEM-X dual-station interferometric SAR data (2011-2014) and SPOT-7 images (2015) data were used to generate multi-temporal digital elevation models of the Yanong Glacier in southeastern Tibet based on optical photogrammetry and radar interferometry techniques, respectively. For the TanDEM-X radar data, the geometric positioning errors in the glacier area were removed during the data processing, and the outliers in the snow cover area in the KH-9 DEM were removed. Subsequently, the inter-decadal and inter-annual thickness variation datasets of Yalong glacier during 1975-2015 were finally generated after X-band and C-band radar wave penetration depth corrections. The spatial resolution of this data set is 30m, which can be further used for calibration of glacier evolution model parameters and analysis of glacier future changes.
ZHOU Yushan , LI Xin, ZHENG Donghai, LI Zhiwei
1) Data content: Glacier elevation change in the Southeastern Tibetan Plateau in the past two decades, including time series during 2000 and 2020 and glacier elevation change from 2000 to 2019 at 0.5° grid scale. 2) Data sources and processing methods: Time series during 2000 and 2020 were generated from glacier monitoring methods integrating satellite altimetry (ICESat, CryOSat-2, ICESAT-2), topographic data (DEM derived from ASTER L1A images in 2014), and satellite gravity (GRACE and GLDAS). The grid-scale glacier elevation changes were calculated by ICESAT-2 and NASADEM. 3) Description of data quality: This data is consistent with UAV derived DSM results, GPS observations, and reported results. The temporal resolution and spatial resolution of this data have been significantly improved. 4) Data application results and prospects: This data can be used to calibrate glacial / hydrological model. The data can also be compared with future studies.
ZHAO Fanyu, LONG Di, LI Xingdong, HUANG Qi, HAN Pengfei
Glacial mass balance is one of the most important glaciological parameters to characterize the accumulation and ablation of glaciers. Glacier mass balance is the link between climate and glacier change, and it is the direct reflection of glacier to the regional climate. Climate change leads to the corresponding changes in the material budget of glaciers, which in turn can lead to changes in the movement characteristics and thermal conditions of glaciers, and then lead to changes in the location, area and ice storage of glaciers. The monitoring method is to set a fixed mark flower pole on the glacier surface and regularly monitor the distance between the glacier surface and the top of the flower pole to calculate the amount of ice and snow melting; In the accumulation area, the snow pits or boreholes are excavated regularly to measure the snow density, analyze the characteristics of snow granular snow additional ice layer, and calculate the snow accumulation; Then, the single point monitoring results are drawn on the large-scale glacier topographic map, and the instantaneous, seasonal (such as winter and summer) and annual mass balance components of the whole glacier are calculated according to the net equilibrium contour method or contour zoning method. The data set is the annual mass balance data of different representative glaciers in the Qinghai Tibet Plateau and Tianshan Mountains, in millimeter water equivalent.
WU Guangjian
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers and 6 national meteorological stations in six different catchments, this study presents air temperature variability in different glacierized/nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold-dry northwestern Tibetan Plateau and the lowest LRs located on the warm-humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree days, particularly with respect to large glaciers with a long flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.
YANG Wei
This data is the simulated data of glacier distribution in the alpine region of Asia since the last glacial maximum, It includes the annual resolution glacier area change sequence of typical regions (High mountain Asia, Tianshan Mountains, Himalayas and Pamir Plateau) and typical periods (LGM (20000 ~ 19000ka), HS1 (17000 ~ 16000ka), BA (~ 14900 ~ 14350ka), yd (12900 ~ 12000ka), eh (9500 ~ 8500ka), MH (6500 ~ 5500ka), LH (3500 ~ 2500ka) and modern (1951 ~ 1990)) 1 km resolution glacier distribution in High Mountain Asia. This data are created by taking the trace full forcing simulation based on ccsm3 climate model as the external forcing field to drive the 1 km resolution PISM ice sheet model. This data can be used to study the changes of glacier distribution in the alpine region of Asia since the last glacial maximum and its impact on environmental and climatic factors such as lake water level, runoff and landform.
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of absolute pressure and water temperature. Data from the automatic water gauge was collected using USB equipment at 12:00 on June 15, 2021, with a recording interval of one hour, and data was downloaded at 12:00 on Nov. 2, 2021. There is no missing data. Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The record contains data of absolute pressure and water temperature. Data from the automatic water gauge was collected using USB equipment at 20:00 on June 19, 2021, with a recording interval of one hour, and data was downloaded at 11:00 onSept 18 , 2021. There is no missing data.
ZHANG Dongqi
The data set of light absorbing impurities in snow and ice in and around the Qinghai Tibet Plateau include black carbon and dust concentration data and their mass absorption cross sections from 9 glaciers (Urumqi glacier No.1, Laohugou glacier No.12, xiaodongkemadi glacier, renlongba glacier, Baishui River glacier No.1, and golubin glacier, Abramov glacier, syekzapadniyi glacier and No. 354 glacier in Pamir region) . The black carbon data is obtained by DRI 2015 model thermo-optical carbon analyzer, and the dust data is obtained by weighing method. The sampling and experimental processes are carried out in strict accordance with the requirements. The data can be used for the study of snow ice albedo and climate effect.
KANG Shichang
The mass loss of the Greenland ice sheet has been the main contributor to global sea level rise in recent decades. Under the trend of global warming, the Greenland ice sheet is melting faster. It is of great scientific significance to explore the causes of mass loss and its response to climate change. Based on the MEaSUREs Greenland groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs annual ice velocity data from 1985 to 2015 with the BedMachine v3 ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Greenland ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Greenland ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Greenland ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Greenland ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
The Antarctic ice sheet is one of the largest potential sources of global sea level rise. Accurately determining the mass budget of the ice sheet is the key to understand the dynamic changes of the Antarctic ice sheet. It is very important to understand the evolution process of the ice sheet and accurately predict the future global sea level rise. Based on the MEaSUREs Antarctic groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs and RAMP annual ice velocity data from 1985 to 2015 with the BedMachine ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Antarctic ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Antarctic ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Antarctic ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Antarctic ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
From 2015 to 2020, physicochemical properties of glacial snow and ice of NO.15 glacier (NO.15), 24K glacier (24K), Azha glacier(AZ), Cuopugou glacier(CPG), Demula glacier (DML), Dongrongbu glacier (DRB), Dongkemadi glacier (DKMD), Dunde glacier (DD), Guliya glacier (GLY), Hongqi Lapu glacier (HQLP), Kangxiwa River glacier (KXW), Kangwure glacier (KWR), Kuoqionggangri glacier (KQGR), Langadingri glacier (LADR), Mengdagangri glacier (MDGR), Mugagangqiong glacier (MGGQ), Muji glacier (MJ), Mushtag glacier (MSTG), Namunani glacier (NMNN), Nima glacier (NM), Nujiangyuantou (NJYT), Palung 4 glacier (PL4), Qiangtang No.1 glacier (QT), Qiangyong glacier (QY), Quma glacier (QM), Seqila glacier (SQL), Tanggula longxiazailongba glacier (LXZ), Xiagangjiang glacier (XGJ), Yala glacier (YL), Zepugou glacier (ZPG), Zhuxigou glacier (ZXG) on the Tibetan plateau, including DOC The samples were analyzed by 0.45 µm molecular membranes. Samples were filtered through 0.45 micron molecular membranes and tested using a Shimadzu TOC-L instrument, while ion concentrations were measured by ion chromatography. The unit of the indicator is mg/L. "n.a." means below the detection limit of the instrument, and "\" means missing value. Sheet1 in the table is "Physicochemical properties of glaciers and snow ice on the Tibetan Plateau (2015-2020)", and sheet2 is "Basic information of glaciers".
LIU Yongqin
Geladandong region is an important and typical source region of great rivers and lakes in the Qinghai Tibet Plateau. This data set provides DEM covering glaciers in the source region of the Yangtze River and Selin Co with different time scales and resolutions to calculate the seasonal and decadal changes of glacier surface elevation in the source region. This data set includes seven 5-meter resolution TanDEM-X data from July 2016 to 2017, which can be used to calculate the seasonal change of glacier surface elevation; it includes one KH-9 DEM with a resolution of 30m in 1976, five TanDEM-X with a resolution of 30m in 2011, one TanDEM-X in 2014 and three TanDEM-X in 2017 with a resolution of 30m. The data can be used to calculate the change of glacier surface elevation during 1976-2000, 2000-20112011-2017. At the same time, Landsat ETM data are used to extract the glacier outline in 1976and we divide it according to the RGI6.0; The right figure shows the spatial and temporal coverage information of the data set, and the base figure is the orthophoto corrected kh-9 image.
CHEN Wenfeng
This data set includes the average concentrations of chemical species (Na+, K+, Mg2+, Ca2+ and TDS) in meltwater runoff draining 77 glaciers worldwide, annual glacial runoff from eight mountain ranges in Asia, and the mineral compositions of glacial deposits in some typical glacial catchments within Asia. This data set comes from the field monitoring of 19 glaciers in Asia by the data set provider, the previous published data worldwide, and the data shared by the authors of published papers. This data set can be used to evaluate the impact of climate warming on glacier erosion process and chemical weathering process, and the impact of glacier melt caused by climate warming on downstream ecosystems and element cycles.
LI Xiangying
This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.
YANG Wei
Glacial mass balance is one of the most important glaciological parameters to characterize the accumulation and ablation of glaciers. Glacier mass balance is the link between climate and glacier change, and it is the direct reflection of glacier to the regional climate. Climate change leads to the corresponding changes in the material budget of glaciers, which in turn can lead to changes in the movement characteristics and thermal conditions of glaciers, and then lead to changes in the location, area and ice storage of glaciers. The monitoring method is to set a fixed mark flower pole on the glacier surface and regularly monitor the distance between the glacier surface and the top of the flower pole to calculate the amount of ice and snow melting; In the accumulation area, the snow pits or boreholes are excavated regularly to measure the snow density, analyze the characteristics of snow granular snow additional ice layer, and calculate the snow accumulation; Then, the single point monitoring results are drawn on the large-scale glacier topographic map, and the instantaneous, seasonal (such as winter and summer) and annual mass balance components of the whole glacier are calculated according to the net equilibrium contour method or contour zoning method. The data set is the annual mass balance data of different representative glaciers in the Qinghai Tibet Plateau and Tianshan Mountains, in millimeter water equivalent.
WU Guangjian
High resolution pollen records from ice cores can indicate the relationship between seasonal vegetation changes and climate indicators. High resolution sporopollen analysis was carried out on the 32 m ice core sediments of Zuopu ice core in Qinghai Tibet Plateau. 117 SPOROPOLLEN ASSEMBLAGES were obtained. All the data are sporopollen percentage data, which are arranged in order of depth.
LV Houyuan
Glacier thickness is the vertical distance between the glacier surface and the glacier bottom. The distribution of glacier thickness is not only controlled by glacier scale and subglacial topography, but also varies with different stages of glacier response to climate. The data include longitude and latitude, elevation, single point thickness, total ice reserves and instrument type of glacier survey line. The glacier thickness mainly comes from drilling and ground penetrating radar (GPR). The drilling method is to drill holes on the ice surface to the bedrock under the ice, so as to obtain the thickness of the glacier at a single point; Glacier radar thickness measurement technology can accurately measure the continuous distribution of glacier thickness on the survey line, and obtain the topographic characteristics of subglacial bedrock, so as to provide necessary parameters for the estimation of glacier reserves and the study of glacier dynamics The accuracy of glacier drilling data reaches decimeter level. The accuracy of thickness measurement by GPR radar is between 5% and 15% in theory due to the difference of glacier properties and radar signal strength of bottom interface. Glacier thickness is a prerequisite for obtaining information of subglacial topography and glacier reserves. In the numerical simulation and model study of glacier dynamics, glacier thickness is an important basic input parameter. At the same time, glacier reserve is the most direct parameter to characterize glacier scale and glacier water resources. It is not only very important for accurate assessment, reasonable planning and effective utilization of glacier water resources, but also has important and far-reaching significance for regional socio-economic development and ecological security.
WU Guangjian
This dataset includes data of glacier elevation changes in 2000‒2013 and 2000‒2017 at high spatial resolution (5 m). The specific areas are Namco area in the west section of Nyainqentangula Mountains (WNM) and Kangri Karpo area in the east section of Nyainqentangula Mountains (ENM). Glacier boundary refers to Randolph Glacier Inventory Version 4.0 (RGI 4.0). The glacier elevation changes were calculated from the DEM data generated by ZiYuan-3 Three-Line-Array (ZY-3 TLA) stereo images in 2013 and 2017 and SRTM DEM data in 2000, respectively. The data in the WNM include three periods, i.e., 2000‒2013, 2013‒2017 and 2000‒2017. The data in the ENM include one period, i.e., 2000‒2017. The spatial resolution of the dataset is 5 meters, the unit is m a^−1, the data format is GeoTIFF, the data type is floating-point, and the projection mode is UTM 46N for the west segment and UTM 47N for the east segment. The glacier elevation change can be transformed into the glacier mass balance (unit: w.e. a^−1) of corresponding temporal intervals by multiplying the average density of the glacier. This dataset can provide the details of the spatial patterns of glacier elevation changes to support modeling studies of glacier mass balance in this region.
REN Shaoting, JIA Li
Radar penetration correction is essential for accurately estimating glacier mass balance when using the geodetic methods based on the radar-derived Digital Elevation Model (DEM). Due to heterogeneous snow distribution and snowpack properties, the radar penetration depth varies by region and is basically dependent on the altitudes. Therefore, this data set gives the result of the penetration depth difference of SRTM C/X-band radar on 1°×1° grid of High Mountain Asia Glaciers. The data set contains 214 1°×1° grids SRTM X-band and C-band penetration depth difference in HMA, and a linear fitting expression for each grid. According to the geodetic method, the 30 m SRTM X-band and C-band DEM are used to obtain the results of the penetration depth difference between the SRTM X-band and C-band of the 1°×1° high grid in HMA, and obtain the relationship between the SRTM X-C-band penetration depth difference and the elevation in the glacier area (for specific methods, please refer to references). The data is stored in excel files. Observational data can provide important basic data for studying the glacier mass balance in HMA, and can be used by scientific researchers studying climate, hydrology and glaciers.
JIANG Liming JIANG Liming JIANG Liming
In the discussion of glacial deposition process, formation conditions and evolution, the analysis and study of Quaternary glacial sediment structure, gravel fabric, grain size characteristics, clastic minerals, clay minerals and chemical composition of moraines are of certain significance for understanding the depositional environment of moraines, the scale of glacial activities and the number of glacial periods. The results of X-ray diffraction analysis of clay minerals show that the clay mineral assemblages of all kinds of moraines are dominated by hydrated phlogopite. The composition of this clay mineral is characterized by glaciation and formation in a special environment. For example, the hydrated phlogopite in the moraine clay minerals (glacial mud) is particularly rich, which can form hydrated phlogopite clay rock. According to the results of chemical composition analysis of five moraine samples from different ages (Table 2), the highest content of SiO2 is 53.9%, followed by Al2O3, which accounts for 13.59%, followed by Cao, MgO, FeO, K2O, Fe2O3, Na2O, etc. According to analysis, the chemical composition of moraine is closely related to bedrock. However, due to the action of glaciers and water, its chemical composition changes greatly.
PENG Buzhuo, YANG Yichou, NIAN Yanyun
Mercury is a global pollutant.The Qinghai-Tibet Plateau is adjacent to South Asia, which currently has the highest atmospheric mercury emissions, and could be affected by long-distance transport.The history of atmospheric mercury transport and deposition can be well reconstructed using ice cores and lake cores. The history of atmospheric mercury deposition since the industrial revolution was reconstructed based on 8 lake cores and 1 ice core from the Tibetan Plateau and the southern slope of the Himalayas.This data set contains 8 lake core data from Namtso, Bangongtso, Linggatso, Guanyong Lake, Tanggula Lake, Gosainkunda Lake, Gokyo Lake and Phewa Lake, and 1 ice core data .The resolution of ice core data is 1 year, lake core data is 2~20 years, and the data include mercury concentration and flux.
KANG Shichang
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.
ZHANG Dongqi
According to the color satellite photos, some topographic maps and some actual investigation data, the area of modern glaciers in Namjagbarwa peak area is 1004.20 square kilometers only in wucuoyuan, gangrigab mountain to the west of Galongla, galabailei and the main peak area of Namjagbarwa peak. If there are no glaciers in the vicinity of Longzhu and maladang, plus 1200 square kilometers. Based on the thickness data of some actual observations during the investigation period, and according to some data and field investigation results, some major glaciers are counted and described, including glacier type, glacier orientation, glacier altitude, glacier length, glacier width and glacier area.
PENG Buzhuo, YANG Yichou
The data in the form of .xlsx store the meteorological varialbes observed on the East Rongbuk glacier from May to July. Two sheets, named "Surface_energy_budget" and "Cycle", respectivley, are included. In the sheet of "surface_energy_budget", the meteorological variables are as follows: Four-component radiations (incident solar radiation, reflected shortwave radiation, incoming longwave radiation, outgoing longwave radiation)、wind speed and direction, air temperature and relative humidity, cloud index, south Asian summer monsoon and albedo. In addition, net shortwave radiation, net longwave radiation, net radiation, sensible heat, latent heat and subsurface heat are also included. Energy fluxes are in unit of W m-2. The sheet of "Cycle" stores the diurnal cycle of the meteorological variables mentioned above. In the first line, the prefixes of "1"、"2" and “3” indicate three observational periods, i.e., "1" represents days from 1 - 28 May, "2" represents the period between 29 May 16 June and "3" indicates time episode from 17 June to 22 July.
LIU Weigang
This data set is the physical property data of Hengduan Mountain Glacier, reflecting the temperature condition of Hengduan Mountain Glacier. It was observed on Baishui No.1 glacier on the east slope of Yulong Mountain and dagongba glacier on the west slope of Gongga Mountain by the comprehensive scientific investigation team of Qinghai Tibet Plateau of Chinese Academy of Sciences from 1982 to 1984. The temperature field location, altitude, drilling information, ice surface condition, sampling time, sampling depth and measured temperature of Baishui No. 1 glacier on the east slope of Yulong and dagongba glacier on the west slope of Gongga are recorded in detail in the data, which are obtained from field investigation and calculation. At the same time, the velocity data of dagongba glacier and the surface strain rate, normal strain rate and its error and principal strain rate at 4700m of Baishui No.1 glacier in Yulongshan are available. This data is of great significance to the study of temperature and movement of glacial active layer in Hengduan Mountain area.
LI Jijun
The melting observation of Hengduan Moutain glacier is mainly carried out on Hailuogou Glacier on the east slope of Gongga and the large and small Gongba glacier on the west slope of Gongga. In addition, some ablation observations have been made on Baishui 1 glacier on the east slope of Yulong. According to the melting observation of the four glaciers in the above two mountains, there are some regional representativeness, which makes them reflect the basic situation of melting glaciers in Hengduan Mountain. This data set records the glacier ablation data of different time and different places: from June to August 1982, the Glacier No. 1 in Baishui on the east slope of Yulong mountain was observed at the altitude of 4200m, 4600m and 4800m. From August 27, 1982 to the end of August 1983, the annual measured data of different heights of Hailuogou Glacier tongue on the east slope of Gongga Mountain were collected. From July 12, 1982 to August 6, 1983, the observation data of Gongba glacier melting on the west slope of Gongga Mountain were recorded.
LI Jijun
This data is the statistics of the glaciers and their types in Hengduan Mountain area, the information of each glacier, and the data of some glacier snow lines and related parameters in China. The data includes eight tables, which are glacier Statistics (measured data) of Hengduan Mountains, glacier Statistics (measured data) of Hengduan Mountains, glacier types (measured data), basic characteristics (measured data) of some glacier recharge areas in Gongga Mountain, AAR value and avalanche area (measured data) of some glaciers in Gongga mountain, and ice field in Gongga mountain Data statistics of Sichuan (measured data), thickness measurement statistics of 4 glaciers in Gongga Mountain (measured data), snow line data of some glaciers in China and related parameters (data statistics).
LI Jijun
The data set is a record of glacier distribution in Hoh Xil region, including three tables: the distribution of modern glaciers in various mountain areas in Hoh Xil region, the distribution of modern glaciers in various river basins in Hoh Xil region, and the distribution of modern glaciers in different mountain height segments in Hoh Xil region. Hoh Xil, located in the hinterland of the Qinghai Tibet Plateau, has an average altitude of more than 5000m and a very cold climate. According to the catalogue of China's glaciers and the author's re statistics on the 1 / 100000 topographic map, 437 modern glaciers are developed in the whole region, covering an area of 1552.39 square kilometers, with ice reserves of 162.8349 cubic kilometers, becoming an important source of water supply for many rivers and lakes in the region. Through this data set, we can know more about the distribution of glaciers in this area.
LI Bingyuan
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
ZHAO Huabiao
This data set includes daily, annual and multi-year surface mass balance data from Antarctic ice cap poles, ice (snow) cores / snow pits, automatic weather station altimeters and ground penetrating radar observations. The data come from published literature, data reports and international data sharing platform. After quality control, the most perfect data set of daily, annual and multi-year resolution of surface mass balance of Antarctic ice sheet has been formed. Its middle-aged resolution data span the past 1000 years. The data set is mainly used in glaciology, climatology, hydrology and other disciplines, especially in the quantitative analysis of the temporal and spatial changes of Antarctic surface mass balance, climate model validation, driving ice sheet model and snow granulation model, etc.
1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the MD values were less than 10 m. The maximum error of the GPR-measured data was 230.2 ± 5.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.
ZHANG Yinsheng
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn