The data set includes carbon isotope data of different regions of the Tibetan Plateau and different environmental (carbon isotope data of black carbon and organic carbon in aerosols from 10 typical stations of the Qinghai Tibet Plateau, carbon isotope data of black carbon and water insoluble organic carbon in 11 snow pits in different years, and carbon isotope data of water-soluble organic carbon in monsoon precipitation from 11 stations of the Qinghai Tibet Plateau and its surrounding areas), All samples were collected at each site, and the content and δ 13C and Δ 14C data, which can be used to accurately assess the contribution proportion of atmospheric carbon aerosols, carbon particles deposited on glaciers and water-soluble organic carbon in precipitation from fossil fuels and biomass fuels.
LI Chaoliu
This data set includes the light absorption data of carbon components in the atmosphere and precipitation at typical stations on the Tibetan Plateau (Ranwu (2018-2021), Namco (2013-2016), Everest (2013-2016), Lulang (2015-2016)). All samples were collected on the spot from various sampling points. The concentrations of black carbon and water-soluble organic carbon, as well as the light absorption data were measured, using the index (MAC value) representing the light absorption capacity, The MAC values of light absorption of water-soluble organic carbon and black carbon are calculated. This data is of great significance for evaluating the radiative forcing of carbon particles in the atmosphere, and is an important basic data input for model simulation.
LI Chaoliu
The extraction of glacier surface movement is of great significance in the study of glacier dynamics and material balance changes. In view of the shortcomings of the current application of autonomous remote sensing satellite data in glacier movement monitoring in China, the SAR data covering typical glaciers in alpine areas of the Qinghai Tibet Plateau from 2019 to 2020 obtained under the GF-3 satellite FSI mode was used to obtain the glacier surface velocity distribution in the study area with the help of a parallel offset tracking algorithm. With its good spatial resolution, GF-3 image has significant advantages in extracting glacier movement with small scale and slow movement, and can better reflect the details and differences of glacier movement. This study is helpful to analyze the movement law and spatio-temporal evolution characteristics of glaciers in the Qinghai Tibet Plateau under the background of climate change.
YAN Shiyong
The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
JIANG Liming JIANG Liming JIANG Liming
Based on the monthly precipitation data of 262 rain gauges, WRF and ERA5 precipitation data in the Yarlung Zangbo River basin, the daily precipitation data with a resolution of 10km from 1951 to 2020 in the Yarlung Zangbo River basin and seven sub basins are reconstructed using random forest learning algorithm. This data has been verified by the single point of the station and performs well in terms of annual and seasonal changes. And the data has been reverse evaluated by the hydrological model, which is used to drive the VIC hydrological model to simulate the runoff change of Yajiang River basin and each sub basin, and verified by the measured runoff, MODIS and glacier cataloging data. On the basis of the original first edition, this data has considered the spatial distribution characteristics of precipitation, which can better describe the precipitation characteristics in alpine regions.
SUN He
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
Both a decrease of sea ice and an increase of surface meltwater, which may induce ice-flow speedup and frontal collapse, have a significant impact on the stability of the floating ice shelf in Greenland. However, detailed dynamic precursors and drivers prior to a fast-calving process remain unclear due to sparse remote sensing observations. Here, we present a comprehensive investigation on hydrological and kinematic precursors before the calving event on 26 July 2017 of Petermann Glacier in northern Greenland, by jointly using remote sensing observations at high-temporal resolution and an ice-flow model. Time series of ice-flow velocity fields during July 2017 were retrieved with Sentinel-2 observations with a sub-weekly sampling interval. The ice-flow speed quickly reached 30 m/d on 26 July (the day before the calving), which is roughly 10 times quicker than the mean glacier velocity.
JIANG Liming
Glaciers are sensitive to climate change. With global warming, the melting of glaciers continues to accelerate all over the world. Surging glaciers are glaciers with intermittent and periodic acceleration, which is a sensitive indicator of climate change. Based on Landsat and Sentinel satellite images from 1980s to 2020, the study area images were obtained by filtering, stitching, and cropping. Among them, the L1GS level images collected by Landsat TM sensor were geo-registered using a second-order polynomial, and the error of the geo- registered images was less than one pixel. After image template matching with an orientation correlation algorithm, this data set provides the surface ice flow velocity of a typical surging glacier in the Greenland ice sheet, Sortebræ Glacier in different period from 1980s to 2020. It is expected to contribute to the research on the surging process of Sortebræ Glacier and the discussion on the mechanism of glacier surging in the context of global warming.
QIAO Gang , SUN Zixiang , YUAN Xiaohan
According to the characteristics of terrain data related to different glacier regions, the elevation data of glacier regions are extracted using the established glacier elevation extraction method. The technical route mainly includes:, Using multi-source elevation difference correction method, DEMs registration and elevation correlation deviation correction are realized through Matlab programming, and finally the glacier elevation change from 1970 to 2000 is calculated; (2) Extracting glacier elevation change based on ICEsat data: First, convert GLA14 binary format data into ASCII text data using IDL Readers tool provided by NSIDC, then conduct saturation correction and post-processing of slope and cloud error elimination through Matlab programming, and use multi-source elevation difference correction method to achieve ICEsat and SRTM data registration and elevation related deviation correction, Finally, the annual change trend regression fitting method is used to obtain the elevation change of glaciers from 2003 to 2009; (3) According to two different types of glacier terrain data, the glacier elevation change is extracted.
ZHOU Jianmin
According to the characteristics of terrain data related to different glacier regions, the elevation data of glacier regions are extracted using the established glacier elevation extraction method. The technical route mainly includes:, Using multi-source elevation difference correction method, DEMs registration and elevation correlation deviation correction are realized through Matlab programming, and finally the glacier elevation change from 1970 to 2000 is calculated; (2) Extracting glacier elevation change based on ICEsat data: First, convert GLA14 binary format data into ASCII text data using IDL Readers tool provided by NSIDC, then conduct saturation correction and post-processing of slope and cloud error elimination through Matlab programming, and use multi-source elevation difference correction method to achieve ICEsat and SRTM data registration and elevation related deviation correction, Finally, the annual change trend regression fitting method is used to obtain the elevation change of glaciers from 2003 to 2009; (3) According to two different types of glacier terrain data, the glacier elevation change is extracted.
ZHOU Jianmin
The data include three files on the spatial variation of surface elevation of endorheic glaciers in the Tibetan Plateau from 1975-2000 (100m), the mean elevation change values of glaciers in each sub-basin of the endorheic region from 1975-2020, and the basin boundaries and zoning. The glacier surface elevation changes from 1975-2000 were obtained based on 32 pairs of KH-9 data and NASADEM, where the results for the Muzetag and Puruogangri areas were obtained from Zhou et al. (2018) and Bhattacharya et al. (2021) respectively The average elevation change results for each 5-year period from 1995-2020 for the respective basins were obtained based on data published by Huggonet et al. (2021), and here it is assumed that the glacier thickness changes from 1995-2000 are similar to those from 2000-2005. Due to the limitation of KH-9 data quality and the glacier characteristics in the instream area, there are many null areas, and it is recommended to combine the zoning and calculate the change results for each elevation zone first, and then project them to each sub-basin.
CHEN Wenfeng, ZHANG Guoqing
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
YANG Bojin , HUANG Huabing , LIANG Shuang , LI Xinwu
Continued global warming and degradation of the cryosphere are raising concerns about adaptation to environmental instability in mountain areas. In recent decades, glacier-related slope failures, such as ice avalanches and rock avalanches on glaciers, have been frequently documented. In this study, we create a global inventory of glacier-related landslides to examine their distribution, trends, fractures, and relationship to climate change. During the period 1901-2019, 737 glacier-related landslides were recorded, including 156 ice avalanches, 89 ice-rock avalanches, 26 glacier slides, and 466 supraglacial rock avalanches. The Pacific Northwest had the most recorded cases (N = 440, 60%), with supraglacial rockfalls being the most dominant. In addition, the currently published list of glacial lake outburst floods of regional or global nature is integrated and refined, and moraine lake outburst flood events are separated separately. 380 moraine lake outburst flood events were counted between 1901 and 2020, making it the most complete list available on a global scale.
ZHANG Taigang, WANG Weicai
The data is an excel file, which includes four tables named as follows: Altay Snow DOC Time Series, Altay Snow Pit Data, Altay Snow MAC (absorption section) and Central Asia Mos Island Glacier BC, OC, DUST Data. Altay snow DOC table includes seven columns including sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 47 sample data. Altay snow pit table includes 8 columns including snow pit number, sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 238 sample data. Altay snow MAC table includes: sampling time, MAC and AAE, a total of three columns, and 46 sample data. The BC, OC and DUST data tables of glaciers in Central Asia's Muse Island include 8 columns: code no (sample number), Latitude (latitude), Longitude (longitude),/m a.s.l (altitude), snow type (snow type), BC, OC and DUST, which are analyzed by sampling time. There are 105 rows of data in total. Abbreviation explanation: DOC: Dissolved Organic Carbon MAC: mass absorption cross section BC: black carbon DUST: Dust OC: Organic carbon TN: Total Nitrogen PPM: ug g-1 (microgram per gram) PPb: ng g-1 (nanogram per gram)
ZHANG Yulan
The alpine region of Asia is the third pole in the world, and it is called the "Asian water tower". Affected by climate warming, glaciers continue to lose money, which has profoundly changed the supply-demand relationship of glacial water resources. In order to systematically understand the response of glaciers to climate change, the project reveals the relationship between the change of glacier material balance and climate factors through the sensitivity of glacier material balance. The data includes two maps: the sensitivity distribution map of material balance to temperature and precipitation and the climate sensitivity zoning. In the past 70 years, there have been significant differences in the evolution sequence of glacier material balance among mountain systems in the high mountain region of Asia. The glaciers in the Karakoram and West Kunlun regions have shown a stable state, and the material balance is a weak positive balance, while the Himalayas, Tianshan and Qilian Mountains have shown an accelerated trend after 1990. This is mainly due to the sensitivity of material balance to temperature and precipitation. The monthly scale material balance model is driven by 0.5 ° resolution era5 temperature and precipitation data, and the material balance calibration parameters of 43 monitored glaciers are 1 ° from 2000 to 2016 × The parameters are spatially constrained by the 1 ° aster material balance data, and the material balance sequences of 95085 glaciers in the high mountain region of Asia from 1951 to 2020 are reconstructed by using the method of extrapolation of spatial parameters. The sensitivity of glacier material balance to temperature (± 0.5K, ± 1K, ± 1.5k) and precipitation (± 10%, ± 20%, ± 30%) is analyzed, In combination with the influencing factors of glacier material balance (distribution of summer temperature, ratio of summer precipitation, distribution of glacier types, distribution of clear sky solar radiation in summer, etc.), the glacial climate sensitivity in the high mountain region of Asia is classified and divided into four categories, as shown in Fig. 4: the main control area of air temperature: the temperature is the main control factor of glacier material balance change, and precipitation occupies a secondary position; Precipitation control area: the glacier is mainly controlled by precipitation, and the temperature in the glacier area is lower than 0 ° C throughout the year; Temperature and precipitation control area of accumulated glacier in winter: refers to that the glacier is mainly supplied by precipitation in winter, and the change of material balance of the glacier is the result of the joint action of temperature and precipitation; Summer cumulative glacier temperature and precipitation control area: refers to the supply mode of glacier is summer precipitation, and the material balance of glacier is the result of the joint action of temperature and precipitation.
SHANGGUAN Donghui
1) The data content is the exposure age of the Cosmogenic Nuclide 10Be of the moraine left by the glaciers around the Muztagh Ata peak in the Holocene, including the sampling location, 10Be concentration, calculation results, etc. 2) 10Be concentration data are from published literature. Referring to the latest 10Be yield in the world, three different yield correction methods are used to calculate the exposure age of moraine samples. 3) Compared with the chronological data of the original published literature, this data is more accurate, and the chronological results given by the three methods can be compared with each other, with better concentration within the error range. 4) The data can be used to understand the Holocene change law of glaciers in Pamir region and provide data support for chronological comparison of glacial evolution in the northwest of the plateau.
XU Xiangke, XU Baiqing
1) The data include annual scale oxygen isotope and accumulation records of ice cores from 1900 to 2011, which respectively reflect the temperature and precipitation changes in the study area; 2) For analysis, the ice core samples were first measured using Picaro δ 18O and as per δ The seasonal variation characteristics of 18O determine the age of ice core; The accumulation of ice cores is calculated according to the density of ice cores, the length of ice cores per year and the glacier flow model; 3) Professional laboratory personnel and front-line scientific research personnel operate and maintain the instrument to ensure the reliability of analysis data; 4) The data can be used to analyze the climate and environmental changes in the typical westerly region of the Qinghai Tibet Plateau over the past 100 years, and can be used to explore the evolution of glaciers in this period, providing scientific reference for predicting the future evolution of glaciers, changes in hydrology and water resources and their impact on human activities.
XU Baiqing
Glacier surface albedo is a key parameter in the process of glacier mass and energy balance. The data include annual mean glacier surface albedo and annual minimum glacier surface albedo for each year of the 2000-2020 ablation period (June-August) in the High Mountain Asia. Based on the MODIS 500m resolution daily snow albedo products (including MOD10A1 and MYD10A1), firstly, mean-synthesis was applied to the morning star data MOD10A1 and afternoon star data MYD10A1, followed by interpolation and null-filling using mean-filtering for data within a ±2 day window, and finally based on the minimum and mean methods to obtain the annual mean albedo and annual minimum albedo for glaciers in High Mountain Asia were obtained based on the minimum and mean methods. Compared to the original data, the accuracy and coverage of the data are greatly improved. It can provide ice surface albedo input data for studying the relationship between glacier albedo and matss balance and for glacier models.
XIAO Yao
In recent years, with the acceleration of the melting of the Antarctic ice sheet, a large amount of ice melt has formed on the surface of the ice sheet from 2000 to 2019. It is of great significance to study the material balance of the Antarctic ice sheet to deeply understand the spatial-temporal distribution and dynamic changes of the melt water on the Antarctic ice sheet. This data set is based on Landsat7 and landsat8 images with 30 m spatial resolution from 2000 to 2019. By using normalized water body index, Gabor filtering and morphological path opening operations, the ice melt grid data set is generated, and the grid water body mask is converted into vector data in ArcGIS. This data set is based on the 250m ice surface melt water data set of the Antarctic ice sheet melting area (Alexander Island, Antarctic Peninsula) from 2000 to 2019 extracted from Landsat images. The time is concentrated from December to February (Southern Hemisphere summer)
YANG Kang
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
The data product of ice flow velocity field of Rayner Glacier in East Antarctica in 1963 based on ARGON historical remote sensing images. Using two declassified satellite images taken in 1963 with an interval of two months, the early ice flow velocity field of the Reina Glacier in eastern Antarctica is estimated by hierarchical matching based on parallax decomposition. The accuracy of the estimated velocity map can reach 70 m/year. A method for estimating the surface velocity of cooperative glaciers based on the parallax decomposition of optical stereo images. First, the image to be matched generates the core image and the pyramid of the core image; Next, the ice flow area mask is used to divide the image into ice flow area and non ice flow area for matching respectively. In addition to the normal matching steps, the ice flow area also needs to perform parallax demarcation to distinguish the impact of ice flow movement on terrain parallax. Finally, through layer by layer matching, we can get the DTM and ice flow diagram of the object side at the bottom. This data is of great significance for reconstructing the early surface morphology and ice flow velocity of Rayner Glacier in East Antarctica.
LI Rongxing , QIAO Gang , YE Wenkai
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
SU Bo
This dataset contains the glacier outlines in Qilian Mountain Area in 2015. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2018 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2018, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
This dataset contains the glacier outlines in Qilian Mountain Area in 2021. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2021 were used as basic data for glacier extraction. Sentinel-2 images, Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2021, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
The dataset includes three high-resolution DSM data as well as Orthophoto Maps of Kuqionggangri Glacier, which were measured in September 2020, June 2021 and September 2021. The dataset is generated using the image data taken by Dajiang Phantom 4 RTK UAV, and the products are generated through tilt photogrammetry technology. The spatial resolution of the data reaches 0.15 m. This dataset is a supplement to the current low-resolution open-source topographic data, and can reflect the surface morphological changes of Kuoqionggangri Glacier from 2020 to 2021. The dataset helps to accurately study the melting process of Kuoqionggangri Glacier under climate change.
LIU Jintao
This dataset includes the glacier elevation change data in the High Mountain Asia (HMA) region from 2018 to 2020 derived from Ice, Cloud and land Elevation Satellite (ICESat-2) data. The glacial elevation changes in the High Mountain Asia region were calculated using ICESat-2 data (2018-2020) and SRTM DEM data in 2000, taking into account the inhomogeneity of glacier changes and area distribution at different elevations and slopes (weighted average of glacier area of elevation and slope bins in 1°×1° grid ). The dataset can provide the annual change information of glacier elevation in the High Mountain Asia region from 2018 to 2020 relative to 2000. These data can be used for studies of climate change in the High Mountain Asia.
SHEN Cong , JIA Li
This dataset includes the glacier elevation change data in the High Mountain Asia (HMA) region from 2003 to 2008 derived from Ice, Cloud and land Elevation Satellite (ICESat-1) data. The glacial elevation changes in the High Mountain Asia region were calculated using ICESat-1 data (2003-2008) and SRTM DEM data in 2000, taking into account the inhomogeneity of glacier changes and area distribution at different elevations and slopes (weighted average of glacier area of elevation and slope bins in 1°×1° grid ). The dataset can provide the annual change information of glacier elevation in the High Mountain Asia region from 2003 to 2008 relative to 2000. These data can be used for studies of climate change in the High Mountain Asia.
SHEN Cong , JIA Li
1) The data included the thickness, coordinates and elevation of Xiaodongkemadi glacier and was measured from July 26 to 28, 2021; 2) The data was measured by the ground penetrating radar with working frequency of 100MHz developed by China Institute of Water Resources and Hydropower Research. The thickness of the glacier was obtained through the processing and analysis of the radar echo image. The dielectric constant of the ice was 3.2, and the coordinates and elevation of the measuring points were measured by the RTK system; 3) The data can be used to study the changes of glacier thickness, mass balance , runoff and so on.
FU Hui
Glacier thickness variation is a key parameter for glacier change monitoring. Historical high-resolution KH-9 images (1974), SRTM DEM data products (2000), TanDEM-X dual-station interferometric SAR data (2011-2014) and SPOT-7 images (2015) data were used to generate multi-temporal digital elevation models of the Yanong Glacier in southeastern Tibet based on optical photogrammetry and radar interferometry techniques, respectively. For the TanDEM-X radar data, the geometric positioning errors in the glacier area were removed during the data processing, and the outliers in the snow cover area in the KH-9 DEM were removed. Subsequently, the inter-decadal and inter-annual thickness variation datasets of Yalong glacier during 1975-2015 were finally generated after X-band and C-band radar wave penetration depth corrections. The spatial resolution of this data set is 30m, which can be further used for calibration of glacier evolution model parameters and analysis of glacier future changes.
ZHOU Yushan , LI Xin, ZHENG Donghai, LI Zhiwei
1) Data content: Glacier elevation change in the Southeastern Tibetan Plateau in the past two decades, including time series during 2000 and 2020 and glacier elevation change from 2000 to 2019 at 0.5° grid scale. 2) Data sources and processing methods: Time series during 2000 and 2020 were generated from glacier monitoring methods integrating satellite altimetry (ICESat, CryOSat-2, ICESAT-2), topographic data (DEM derived from ASTER L1A images in 2014), and satellite gravity (GRACE and GLDAS). The grid-scale glacier elevation changes were calculated by ICESAT-2 and NASADEM. 3) Description of data quality: This data is consistent with UAV derived DSM results, GPS observations, and reported results. The temporal resolution and spatial resolution of this data have been significantly improved. 4) Data application results and prospects: This data can be used to calibrate glacial / hydrological model. The data can also be compared with future studies.
ZHAO Fanyu, LONG Di, LI Xingdong, HUANG Qi, HAN Pengfei
Glacial mass balance is one of the most important glaciological parameters to characterize the accumulation and ablation of glaciers. Glacier mass balance is the link between climate and glacier change, and it is the direct reflection of glacier to the regional climate. Climate change leads to the corresponding changes in the material budget of glaciers, which in turn can lead to changes in the movement characteristics and thermal conditions of glaciers, and then lead to changes in the location, area and ice storage of glaciers. The monitoring method is to set a fixed mark flower pole on the glacier surface and regularly monitor the distance between the glacier surface and the top of the flower pole to calculate the amount of ice and snow melting; In the accumulation area, the snow pits or boreholes are excavated regularly to measure the snow density, analyze the characteristics of snow granular snow additional ice layer, and calculate the snow accumulation; Then, the single point monitoring results are drawn on the large-scale glacier topographic map, and the instantaneous, seasonal (such as winter and summer) and annual mass balance components of the whole glacier are calculated according to the net equilibrium contour method or contour zoning method. The data set is the annual mass balance data of different representative glaciers in the Qinghai Tibet Plateau and Tianshan Mountains, in millimeter water equivalent.
WU Guangjian
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers and 6 national meteorological stations in six different catchments, this study presents air temperature variability in different glacierized/nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold-dry northwestern Tibetan Plateau and the lowest LRs located on the warm-humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree days, particularly with respect to large glaciers with a long flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.
YANG Wei
This data is the simulated data of glacier distribution in the alpine region of Asia since the last glacial maximum, It includes the annual resolution glacier area change sequence of typical regions (High mountain Asia, Tianshan Mountains, Himalayas and Pamir Plateau) and typical periods (LGM (20000 ~ 19000ka), HS1 (17000 ~ 16000ka), BA (~ 14900 ~ 14350ka), yd (12900 ~ 12000ka), eh (9500 ~ 8500ka), MH (6500 ~ 5500ka), LH (3500 ~ 2500ka) and modern (1951 ~ 1990)) 1 km resolution glacier distribution in High Mountain Asia. This data are created by taking the trace full forcing simulation based on ccsm3 climate model as the external forcing field to drive the 1 km resolution PISM ice sheet model. This data can be used to study the changes of glacier distribution in the alpine region of Asia since the last glacial maximum and its impact on environmental and climatic factors such as lake water level, runoff and landform.
YAN Qing
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of absolute pressure and water temperature. Data from the automatic water gauge was collected using USB equipment at 12:00 on June 15, 2021, with a recording interval of one hour, and data was downloaded at 12:00 on Nov. 2, 2021. There is no missing data. Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The record contains data of absolute pressure and water temperature. Data from the automatic water gauge was collected using USB equipment at 20:00 on June 19, 2021, with a recording interval of one hour, and data was downloaded at 11:00 onSept 18 , 2021. There is no missing data.
ZHANG Dongqi
The data set of light absorbing impurities in snow and ice in and around the Qinghai Tibet Plateau include black carbon and dust concentration data and their mass absorption cross sections from 9 glaciers (Urumqi glacier No.1, Laohugou glacier No.12, xiaodongkemadi glacier, renlongba glacier, Baishui River glacier No.1, and golubin glacier, Abramov glacier, syekzapadniyi glacier and No. 354 glacier in Pamir region) . The black carbon data is obtained by DRI 2015 model thermo-optical carbon analyzer, and the dust data is obtained by weighing method. The sampling and experimental processes are carried out in strict accordance with the requirements. The data can be used for the study of snow ice albedo and climate effect.
KANG Shichang
This is a comprehensive dataset on microbial abundance, dissolved organic carbon (DOC), and total nitrogen (TN) for glaciers on the TP based on extensive field sampling from 2010. The dataset comprises 5,409 microbial abundance records of ice cores and snow pits from 12 glaciers and 2,532 DOC and TN records of five habitats, including ice core, snow pit, surface ice, surface snow, and proglacial runoff, from 38 glaciers. These glaciers covered broad areas and diverse climate conditions with a multiyear average temperature ranging from -13.4 ℃ (the Guliya glacier) to 2.9 ℃ (the Zhuxigou glacier) and multiyear average precipitation ranging from 76.9 mm (the No.15 glacier) to 927.8 mm (the 24K glacier), which makes this dataset suitable for studies across the entire TP. To the best of our knowledge, this is the first dataset of microbial abundance and TN in glaciers on the TP, and also the first dataset of DOC in ice cores on the TP. These new data could provide valuable information for researches on the glacier carbon and nitrogen cycle and assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
LIU Yongqin
The mass loss of the Greenland ice sheet has been the main contributor to global sea level rise in recent decades. Under the trend of global warming, the Greenland ice sheet is melting faster. It is of great scientific significance to explore the causes of mass loss and its response to climate change. Based on the MEaSUREs Greenland groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs annual ice velocity data from 1985 to 2015 with the BedMachine v3 ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Greenland ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Greenland ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Greenland ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Greenland ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
The Antarctic ice sheet is one of the largest potential sources of global sea level rise. Accurately determining the mass budget of the ice sheet is the key to understand the dynamic changes of the Antarctic ice sheet. It is very important to understand the evolution process of the ice sheet and accurately predict the future global sea level rise. Based on the MEaSUREs Antarctic groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs and RAMP annual ice velocity data from 1985 to 2015 with the BedMachine ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Antarctic ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Antarctic ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Antarctic ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Antarctic ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn