Forest carbon density is an important parameter for quantifying regional carbon storage and its change. However, the existing research has the problem of coarse resolution and large uncertainty. Therefore, based on the ground survey data, combined with spaceborne laser radar (GEDI) and Landsat images, the study used depth learning to automatically mine multi-dimensional image features, and mapped the forest aboveground carbon density in Northeast China with a 30 meter spatial resolution. The results are in good agreement with the field measured data (R2=0.84 RMSE=6.28). The results provided by the study will provide benchmark data for regional carbon dynamic monitoring. Carbon density data unit MgC ha-1
WANG Xiaoyi , WANG Tao, LV Guanting
Forest is an important terrestrial ecosystem, accounting for about one-third of the total land area. It plays an important role in regulating climate, providing habitat for species, and maintaining global ecosystem balance. The dynamic change of the tree-canopy cover will affect the structure, composition, and function of the forest ecosystem. Landsat data were used to derive the 30-m tree-canopy cover dataset based on the machine learning method. The dataset of the rate of tree-canopy cover change in the Eastern Himalayas from 1990 to 2020 was generated using the annual tree-canopy cover data. The results show that the average tree-canopy cover in this region had increased from 40.67% (1990) to 43.43% (2020), an increase of 2.76%, indicating that the forests in the Eastern Himalayas improved in the past few decades.
WANG Chunling , WANG Jianbang , HE Zhuoyu , FENG Min
Forest change (including forest loss and gain) is a complex ecological process influenced by natural and human activities, and has important impacts on global material cycles and energy flows. Based on long-term tree-canopy cover (TCC) data, the Bi-temporal class-probabilities model was used to detect forest changes, and a dataset of forest change of the Natural Forest Conversion Program area in northeast China from 1986 to 2018 was obtained (spatial resolution 30 meters with a temporal resolution of 1 year). The method of stratified random sampling was used to select 1000 points in the reserve and visual interpretation was carried out to evaluate the accuracy of forest change. The results show that the accuracy of forest loss (producer's accuracy = 85.21%; user's accuracy = 84.26%) and forest restoration (producer's accuracy = 87.74%; user's accuracy = 88.31%) are both high, which can effectively reflect the forest change status of the protected area.
WANG Jianbang , HE Zhuoyu , WANG Chunling , FENG Min, PANG Yong, YU Tao , LI Xin
Carbon, nitrogen, phosphorus, sulfur and potassium are important basic life elements of ecosystem. It plays an important role in revealing the impact of its regional variation and spatial pattern on human activities and the sustainable development of ecosystem in the future. The Qinghai Tibet Plateau has unique alpine vegetation types and rich vertical zone landforms and surface cover types. The biogeographic pattern of surface elements (carbon, nitrogen, phosphorus, sulfur, potassium) is an important manifestation of the coupling of carbon, nitrogen and water cycle processes and related mechanisms of alpine ecosystems. This dataset focuses on the distribution pattern and spatial variation of surface materials (plant leaf branch stem root and litter) in the complex ecosystem of the southeast edge of the Qinghai Tibet Plateau and Hengduan Mountain area, in order to provide data support for regional model simulation and ecological management.
LI Mingxu
Climatic warming alters the onset, duration and cessation of the vegetative season. While prior studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season (TSOS) and tree growth across the extratropical Northern Hemisphere using 3451 tree-ring chronologies and daily climatic data for 1948-2014. An earlier TSOS promoted growth in regions with high ratios of precipitation to temperature but limited growth in cold dry regions. Path analyses indicated that an earlier TSOS enhanced growth primarily by alleviating thermal limitations on wood formation in boreal forests and by lengthening the period of growth in temperate and Mediterranean forests. Semi-arid and dry subalpine forests, however, did not benefit from an earlier onset of growth and a longer growing season, presumably due to associated water loss and/or more frequent early spring frosts. These broadly relevant patterns of how climatic impacts on wood phenology affect tree growth at regional to hemispheric scales, enhance our understanding of how future phenological changes may affect the carbon sequestration capacity of extra-tropical forest ecosystems.
LIANG Eryuan, GAO Shan
As one of the largest land mammals, the origin and evolution of the giant rhino Paraceratherium bugtiense in Pakistan have been unclear. We report a new species Paraceratherium linxiaense sp. nov. from northwestern China with an age of 26.5 Ma. Morphology and phylogeny reveal that P. linxiaense is the highly derived species of the genus Paraceratherium, and its clade with P. lepidum has a tight relationship to P. bugtiense. Based on the paleogeographical literature, P. bugtiense represents a range expansion of Paraceratherium from Central Asia via the Tibetan region. By the late Oligocene, P. lepidum and P. linxiaense were found in the north side of the Tibetan Plateau. The Tibetan region likely hosted some areas with low elevation, possibly under 2000 m during Oligocene, and the lineage of giant rhinos could have dispersed freely along the eastern coast of the Tethys Ocean and perhaps through some lowlands of this region.
DENG Tao
Agkistrodon halys is the most widely distributed small poisonous snake in Asia and the largest number in China. The Asian Agkistrodon (Gloydius) belongs to Viper family and Agkistrodon subfamily. It has more than 20 species and is mainly distributed on the edge of Asia and Europe. In this study, two unknown new species of plateau Agkistrodon halys were found and described: Gloydius swild from Heishui County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan and Gloydius lipipengi from the Nujiang River Basin in Chayu, Tibet. The data are the original paper (PDF version) of the new species of Agkistrodon acutus and Agkistrodon glacialis, including three-dimensional bone reconstruction map, specimen map, habitat map and other original data. The data source is shooting or drawing. The data includes original pictures with high definition. It can be used for further citation and scientific communication.
SHI Jingsong
This data set includes the PM2.5 mass concentration of atmospheric aerosol particles at Southeast Tibet station, Ali station, mostag station, Everest station and Namuco station (unit: mm) μ g/m3)。 Aerosol PM2.5 fine particles refer to particles with aerodynamic equivalent diameter less than or equal to 2.5 microns in the ambient air. It can be suspended in the air for a long time, which has an important impact on air quality and visibility. The higher its concentration in the air, the more serious the air pollution. The concentration characteristic data of PM2.5 is output at the frequency of obtaining a set of data every 5 minutes, which can realize the analysis of aerosol mass concentration at different time scales such as hour, day and night, season and interannual, which provides the analysis of changes and influencing factors of aerosol mass concentration at different locations in the Qinghai Tibet plateau at different time scales, as well as the evaluation of local air quality, It provides important data support. This data is an update of the published data set of PM2.5 concentration of aerosol particles at different stations on the Qinghai Tibet Plateau (2018 and 2019).
WU Guangjian
This data set includes three land vertebrate infrared cameras and environmental parameter data sets deployed in Northeast Tiger and Leopard National Park. The equipment is deployed at two locations in the National Park, with a time span (2020.8-2021.6). Due to equipment maintenance and insufficient illumination, some data are discontinuous, but the data of the three equipment can complement each other and reconstruct all the information of the observation points in the Northeast Tiger and Leopard National Park from August 2020 to June 2021. Two of the three devices are equipped with infrared cameras, which collect 216 photos and 1239 photos respectively, which can match with the above sensor photos or the ecological factor information before and after taking photos. 1. Wild animals, temperature, humidity, light, pressure and network signal strength information in the forest area of tiger and leopard National Park. The acquisition interval is once every half an hour 2. Data source: "development of terrestrial vertebrate monitoring equipment", 2016yfc0500104, completed by: Institute of Zoology, Chinese Academy of Sciences, raw data, unprocessed 3. The sensor data acquisition interval is every half an hour. The temperature accuracy is plus or minus 0.1 degrees and the humidity accuracy is plus or minus 0.5%. The photo data is divided into trigger and timing. The trigger data is generally triggered by wild animals in the field of vision of the infrared camera; the timing photo data is dynamically adjusted according to the battery power, and the acquisition interval is between 1-12 hours. 4. This data can be used to record the ambient temperature in the reserve. Combined with the infrared camera data, it can be used to analyze the activity rhythm of wild animals, coexistence analysis and distribution limiting factors.
QIAO Huijie
This data set includes a small vertebrate detection system and trigger sensor data set deployed in Heshan hilly comprehensive test station of Chinese Academy of Sciences. The system is deployed in Heshan hilly comprehensive test station Park (112 ° 53'58 "E, 22 ° 40'39" n), with a time span (November 2019-may 2021). The system consists of a flexible pressure sensor array (25cm * 25cm), a scanning circuit, a controller, a control system unit based on a mobile phone board, that is, a smart camera (driven by the trigger signal output by the pressure sensor, the camera is controlled to automatically take pictures, record and record, and upload data). A total of 72 valid and non repetitive animal photos were collected by the system. 1. Small wild animals in the installation site of Heshan hilly comprehensive test station of Chinese Academy of Sciences. When wild animals appear on the flexible pressure sensor, the acquisition is triggered once. 2. Data source: "development of terrestrial vertebrate monitoring equipment", 2016yfc0500104, completed by: Chengdu Institute of biology, Chinese Academy of Sciences, raw data, unprocessed. 3. Photo data can be divided into motion trigger and static pressure trigger. The former requires the moving distance of the animal on the flexible pressure sensor to be greater than the set threshold to prevent repeated trigger when the animal is stationary; the latter refers to that the animal generates pressure on the flexible pressure sensor, that is, it is triggered all the time. This data set is the data in motion trigger mode. 4. This data can be used to record the population number of small wild animals in a certain area (similar to the sensing trap method). Combined with the relevant data of ecological factors, it can be used to analyze the population number and circadian rhythm of small wild animals.
FANG Guangzhan
We develop a DBH recording meter that can automatically record DBH at high frequencies and high precision in the field by designing a high-precision displacement sensor and temperature compensation algorithm. With the developed software, tree growth dynamics can be evaluated online in real time through remote computers or smartphones。The data set is collected through field test and demonstration at Qilian mountain station in Gansu Province and Beijing forest station by using the DBH recording meter. The data table includes the control values measured manually and the measured values of VI (displacement), RI (tree perimeter) and CI (tree diameter) collected by different tree species at different stations. The development of this automatic DBH recording meter promote the automation, intelligent level and independent innovation of vegetation ecological monitoring in China. The dynamic changes of DBH of trees serve the national ecosystem monitoring network, the construction of national "two screens and three belts" ecological security barrier and the demand for large-scale, all-weather and three-dimensional monitoring of vulnerable ecological areas. It plays an important supporting role in promoting the construction of ecological civilization in China.
ZHANG Lin, GAO Liyao, WU Dongxiu
The demonstration data set of automatic plant phenology observer at Heihe Daman station is the corn phenology observation data set collected by the plant phenology observer at Heihe Daman station. The plant phenology observer can collect phenology images through the phenology observation hardware system based on multispectral imager and wireless transmission module, and through online calculation and visual image management Phenological information processing and system control software can realize the automatic identification of key phenological periods at individual and community scales. Through the data collected by the automatic plant phenology observer, the indexes such as vegetation greenness index and NDVI index can be calculated, the change process of key plant phenology can be monitored, and the change law of vegetation phenology can be reflected.
SONG Chuangye, GAO Liyao, WU Dongxiu
In order to describe the distribution pattern of genetic diversity of main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas, clarify their related genetic background, and establish the corresponding genetic resource bank. In 2021, the investigation and collection of genetic resources of domestic animals will be carried out in yinguoling Mongolian Autonomous Prefecture, Xinjiang. A total of 209 blood samples of 500 local domesticated animals such as sheep, pigeons, cattle, goats and chickens were collected. This data set contains basic sample information such as species, variety, detailed sampling place, sample type, collection time, collector and storage method, which are stored in Excel form. This data set also contains the appearance photos of sampled individuals, which are stored in JPG format.
YANG Weikang, XU Feng
This data includes the image data of the second comprehensive field scientific investigation of the Qinghai Tibet Plateau. The image data includes the sample plot photos of the quadrats collected in the nature reserve during the scientific research, the images of forest ecosystem, grassland ecosystem and lake ecosystem in the nature reserve in Northwest Yunnan and Western Sichuan, the vegetation situation, wildlife habitat, and the data of animals, plants and fungi in the reserve. In addition, the image data also includes the sample collection process of the scientific research, the household survey of the scientific research team in the community survey and the image data of the interview with the local protection department. The data comes from UAV and camera shooting, which can provide evidence and reference for scientific research.
SU Xukun
This dataset contains infrared camera data from January 2020 to October 2020 for the Sidalong sample area in the Qilian Mountains region of Lanzhou University. The typical habitats in the sample area of Teradalong are forests, the main tree species are Qilian round cypress and Qinghai spruce, and the typical mammals are red deer, musk deer, roe deer and blue eared-pheasant.. The main steps of infrared camera data processing include. 1. data storage, setting up directories to store photos and video files on computers, mobile hard disks or other storage media. 2. Processing of mistaken or invalid photos. Delete wind-blown, exposure, no animal presence or arbitrary form of invalid photos. 3. species identification. (1) Animal identification image library construction, each survey unit to establish a library of animal identification images, the library is mainly used for the training of species identification personnel, to facilitate their rapid grasp of species identification characteristics, accurate identification of species. (2) Processing of effective photos: for photos (videos) that can accurately identify species, fill in the name, number and environmental information of the animals in the automatic camera (video) recording form; if there are two or more animals on a photo, fill in one line each; for photos that cannot accurately identify species, fill in the column of the name of the animal that cannot be identified, and fill in the number and environmental information, and fill in the photo processing For poultry and livestock, fill in the name and number of animals and poultry and livestock; for people, fill in the name of the animal as "herder, tourist, forest ranger", etc. (3) other information: environmental information records, according to the photos (video), fill in the following environmental information: temperature: according to the temperature shown on the photos to fill in. Weather: sunny, cloudy, rain, snow. Need to judge carefully. Snow: with or without. Behavior: foraging, drinking, hunting, mating, fighting, fighting for food, repelling, playing, running, resting, walking, alerting, etc. Animal age: young, subspecies, female, male, unknown. Published observation data include: file number, file format, folder number, camera number, deployment point number, shooting date, shooting time, working days (days), element, species name, young, sub, female, male, unknown, total, behavior, temperature (℃), weather, snow.
This dataset contains infrared camera data from January 2020 to November 2020 from Qifeng sample area in Qilian Mountains region of Lanzhou University. It belongs to the Sunan Yugu Autonomous County, Zhangye City, Gansu Province, in the northwest of the Sunan Yugu Autonomous County, the western part of the Western Corridor and the northern foot of the Qilian Mountains, east of Daxiang, south of Qilian County and Tianjun County, Qinghai Province, west of Subei County, Jiuquan City, and north of Jiuquan Suzhou District, Jiayuguan City and Yumen City. The typical habitats in the Qifeng sample area are desert and alpine bare rock, and typical mammals include snow leopard, lynx, white-lipped deer and blue sheep. The main steps of infrared camera data processing include. 1. data storage, setting up directories to store photos and video files on computers, mobile hard disks or other storage media. 2. Processing of mistaken or invalid photos. Delete wind-blown, exposure, no animal presence or arbitrary form of invalid photos. 3. species identification. (1) Animal identification image library construction, each survey unit to establish a library of animal identification images, the library is mainly used for the training of species identification personnel, to facilitate their rapid grasp of species identification characteristics, accurate identification of species. (2) Processing of effective photos: for photos (videos) that can accurately identify species, fill in the name, number and environmental information of the animals in the automatic camera (video) recording form; if there are two or more animals on a photo, fill in one line each; for photos that cannot accurately identify species, fill in the column of the name of the animal that cannot be identified, and fill in the number and environmental information, and fill in the photo processing For poultry and livestock, fill in the name and number of animals and poultry and livestock; for people, fill in the name of the animal as "herder, tourist, forest ranger", etc. (3) other information: environmental information records, according to the photos (video), fill in the following environmental information: temperature: according to the temperature shown on the photos to fill in. Weather: sunny, cloudy, rain, snow. Need to judge carefully. Snow: with or without. Behavior: foraging, drinking, hunting, mating, fighting, fighting for food, repelling, playing, running, resting, walking, alerting, etc. Animal age: young, subspecies, female, male, unknown. Published observation data include: file number, file format, folder number, camera number, deployment point number, shooting date, shooting time, working days (days), element, species name, young, sub, female, male, unknown, total, behavior, temperature (℃), weather, snow.
This dataset contains infrared camera data from July 2019 to October 2020 for the Haxi sample area in the Qilian Mountains region of Lanzhou University. The typical habitat in the Haxi sample area is forest, the main tree species are Qilian round cypress and Qinghai spruce, and the typical mammals are red deer, musk deer, roe deer and blue eared-pheasant.. The area is heavily grazed and has frequent human activities. The main steps of infrared camera data processing include. 1. data storage, setting up directories to store photos and video files on computers, mobile hard disks or other storage media. 2. Processing of mistaken or invalid photos. Delete wind-blown, exposure, no animal presence or arbitrary form of invalid photos. 3. species identification. (1) Animal identification image library construction, each survey unit to establish a library of animal identification images, the library is mainly used for the training of species identification personnel, to facilitate their rapid grasp of species identification characteristics, accurate identification of species. (2) Processing of effective photos: for photos (videos) that can accurately identify species, fill in the name, number and environmental information of the animals in the automatic camera (video) recording form; if there are two or more animals on a photo, fill in one line each; for photos that cannot accurately identify species, fill in the column of the name of the animal that cannot be identified, and fill in the number and environmental information, and fill in the photo processing For poultry and livestock, fill in the name and number of animals and poultry and livestock; for people, fill in the name of the animal as "herder, tourist, forest ranger", etc. (3) other information: environmental information records, according to the photos (video), fill in the following environmental information: temperature: according to the temperature shown on the photos to fill in. Weather: sunny, cloudy, rain, snow. Need to judge carefully. Snow: with or without. Behavior: foraging, drinking, hunting, mating, fighting, fighting for food, repelling, playing, running, resting, walking, alerting, etc. Animal age: young, subspecies, female, male, unknown. Published observation data include: file number, file format, folder number, camera number, deployment point number, shooting date, shooting time, working days (days), element, species name, young, sub, female, male, unknown, total, behavior, temperature (℃), weather, snow.
In the first year (from the end of 2019 to the beginning of 2020) of the fifth topic of the second comprehensive scientific investigation and research task of the Qinghai Tibet Plateau, "protection and sustainable utilization of animal diversity in the plateau" (2019qzkk0501), 110 scientific investigation teams were organized to carry out more than 60 field scientific investigations in Motuo area, Qilian Mountain and West Tianshan Mountain of the Qinghai Tibet Plateau, basically covering the whole Qinghai Tibet Plateau. The vertebrates (birds, mammals, reptiles, amphibians, fish) on the Qinghai Tibet Plateau and the agricultural and pastoral insects in the agricultural and pastoral ecotone of the Asian water tower area and the Himalaya area of the Qinghai Tibet Plateau were investigated by using infrared camera, sample line and sample point. Complete the first round of field investigation of exotic fish in typical water bodies such as Yarlung Zangbo River, exotic amphibian and reptile species in Lhasa and Nyingchi of Tibet Autonomous Region and Xining city of Qinghai Province, rodents on the Northern Line of Sichuan Tibet, przewalskii gazelle and other species, and carry out and complete the collection of genetic (or histological) samples of some species. This data set contains the electronic scientific data of habitat photos, sample photos, work photos and work videos collected in the first year of scientific investigation of this topic. The data is sorted and uploaded by the scientific research team (sub topic) and scientific research route.
YIN TingTing
Kraits of the genus Bungarus Daudin 1803 are widely known venomous snakes distributed from Iran to China and Indonesia. Here, we use a combination of mitochondrial DNA sequence data and morphological data to describe a new species from Yingjiang County, Yunnan Province, China: Bungarus suzhenae sp. nov. Phylogenetically, this species forms a monophyletic lineage sister to the Bungarus candidus/multicinctus/wanghaotingi complex based on cyt b and ND4 genes but forms a ister species pair with the species B. magnimaculatus Wall & Evans, 1901 based on COI gene fragments. Morphologically, B. suzhenae sp. nov. is similar to the B. candidus/multicinctus/wanghaotingi complex but differs from these taxa by a combination of dental morphology, squamation, coloration pattern, as well as hemipenial morphology. A detailed description of the cranial osteology of the new species is given based on micro-CT tomography images. We revised the morphological characters of B. candidus/multicinctus/wanghaotingi complex and verified the validity of three species in this complex. The distribution of these species was revised; the records of B. candidus in China should be attributed to B. wanghaotingi. We also provide an updated key to species of Bungarus.
SHI Jingsong
In this paper, we review evidence for a major biotic turnover across the Oligocene/Miocene in the Tibetan Plateau region. Based on the recent study of six well-preserved fossil sites from the Cenozoic Lunpola and Nima basins in the central Tibetan Plateau, we report a regional changeover from tropical/subtropical ecosystems in the Late Oligocene ecosystem (26–24 Ma) to a cooler, alpine biota of the Early Miocene (23–18 Ma). The Late Oligocene fossil biota, comprising of fish (climbing perch), insects and plants (palms), shows that the hinterland of the Tibetan Plateau was a warm lowland influenced by tropical humidity from the Indian Ocean. In the Early Miocene, the regional biota became transformed, with the evolution and diversification of the endemic primitive snow carp. Early Miocene vegetation was dominated by temperate broad-leaved forest with abundant conifers and herbs under a cool climate, and mammals included the hornless rhinoceros, Plesiaceratherium, a warm temperate taxon. This dramatic ecosystem change is due to a cooling linked to the uplift of Tibetan region, from a Late Oligocene paleo-elevation of no greater than 2300 m a.s.l. in the sedimentary basin to a paleo-elevation of about 3000 m a.s.l. Another factor was the Cenozoic global climatic deterioration toward to an ice-house world.
DENG Tao
The data includes: zooplankton species list; zooplankton density; microscopy; high-throughput sequencing; complete data; constructing an original data set for lakes on the Qinghai-Tibet Plateau. Zooplankton is an indispensable link in lake water ecological investigation, and it is a link between the system The location of the food web is an important carrier for the material circulation and energy flow of the food web. The systematic investigation and study of the composition and biodiversity of the zooplankton in the lakes on the Qinghai-Tibet Plateau is particularly important for understanding the stability and resilience of the lake ecosystem on the Qinghai-Tibet Plateau. In addition, Zooplankton are very sensitive to environmental changes, and changes in their structure and functional groups can indicate the intensity and magnitude of environmental pressure.
LI Yun
The data set is based on the GPP simulated by 16 dynamic global vegetation models (TRENDY v8) under S2 Scenario (CO2+Climate) and represents the gross primary productivity of the ecosystem. Data was derived from Le Qu é r é Et al. (2019). The range of source data is global, and the Qinghai Tibet plateau region is selected in this data set. Original data is interpolated into 0.5*0.5 degree by the nearest neighbor method in space, and the original monthly scale is maintained in time. The data set is the standard model output data, which is often used to evaluate the temporal and spatial patterns of gross primary productivity, and compared with other remote sensing observations, flux observations and other data.
STEPHEN Sitch
This is a photo collection of birds in Qinghai-Tibet Plateau produced during the fieldtrip in December 2020 to January 2021. The geographical area mainly covers the middle-down stream of the Yarlung Zangbo River valley, including Lhasa, Qushui, bird species pheasants, buzzards, laughingthrushs rosefinches and accendors. The species were identified by Song Gang, Xing Jiahua, Qiao Huijie from IOZ, Yang Le, Zhou Shengling from Institute of Plateau Biology, Tibet Autonomous Region, and Yixi Duojie from Museum of Natural Science of Tibet
SONG Gang
This database includes the occurrence records of birds in Qinghai-Tibet Plateau produced during the fieldtrip in December 2020 to January 2021. The geographical area mainly covers the middle-down stream of the Yarlung Zangbo River and eastern coast of Namtso lake, covering mang vallies, villiages and wetlands of Lhasa, Linzhi, Shannan, Rikaze. The information of each record is composed of species name, coordinates, date of field observation and observers.
SONG Gang
In the first year (from the end of 2019 to the beginning of 2020), a total of 110 scientific research teams were organized, focusing on more than 60 field scientific investigations in Motuo area, Qilian Mountain and West Tianshan Mountain of the Qinghai Tibet Plateau, covering the whole Qinghai Tibet Plateau. By means of infrared camera, transect and sampling point, the authors investigated the vertebrates (birds, mammals, reptiles, amphibians and fishes) in the Qinghai Tibet Plateau and the agro pastoral insects in the ecotone between agriculture and animal husbandry in the Asian water tower region and Himalaya region. We have completed the first round of field investigation of exotic fish in typical water bodies such as Yarlung Zangbo River, exotic amphibians and reptiles in Lhasa, Nyingchi and Xining city of Qinghai Province, rodents in northern Sichuan Tibet line, and Przewalski gazelle, and carried out and completed the collection of genetic (or histological) samples of some species. This data set contains the information of tissue samples collected during the first year of the scientific expedition. Each folder contains one data set specification table and one or more tissue sample information tables. The information report includes the sub subject number, species, collection place, collection time, collector, sample type, storage method and other information.
ANIMAL RESOURCE PLATFORM OF QINGHAI-TIBET PLATEAU Animal Resource Platform of Qinghai-Tibet Plateau
In order to study the population evolution history and local adaptive genetic mechanism of main domesticated equine animals in Qinghai Tibet Plateau and its surrounding areas, and to establish the corresponding germplasm genetic resource bank. We have sequenced 236 horse samples collected in Qinghai Province, Tibet Autonomous Region and Xinjiang Autonomous Region by the end of 2018, including Tibetan horse, Tibetan donkey, plain domestic donkey and Jiama plain local breed. Seventy five samples (including 73 donkey samples and two horse samples) were sequenced for mitochondrial genome and D-loop sequencing. A number of genomic data were generated by sequencing, which provided data for tracing the domestication, migration, expansion and other historical events of horse domesticated animals in this area, and further exploring the adaptation mechanism of equine animals to the harsh environment such as hypoxia, high temperature and dryness.
LI Yan
This data set is the transcriptome data of Tibetan pigs, which are the control group and the experimental group respectively. There are three individuals in the control group without any treatment. The experimental group is also three individuals. They are attacked with FMDV at the concentration of ID50. All samples are the transcriptome sequence results of the spleen samples of Tibetan pigs. Both the experiment and sample collection were carried out in Lanzhou. The numbers are z1-z6, and each data is divided into R1 and R2, indicating the results of double headed sequencing. Z1-Z3 is the individual results of the control group, and z4-z6 is the individual results of the experimental group. By comparing and analyzing the data of the control group and the experimental group, we can find out the response of the immune system in vivo when FMDV attacks the body of Tibetan pigs, find the immune genes and immune pathways that are activated when FMDV is attacked, find the related genes and pathways for the ability of resistance of Tibetan pigs to FMDV, and increase the immunity to FMDV in the future breeding process of domestic pigs Epidemic ability provides theoretical basis.
DUAN Ziyuan
In order to describe the distribution pattern of the genetic diversity of the main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas, and to clarify the related genetic background. In 2019, we selected two breeds of pigs in Yunnan Province as low altitude reference, collected RNA tissue samples from the brain of two breeds of pigs, extracted total RNA, built a database and sequenced the transcriptome. Sequencing produced a batch of 322g transcriptome sequencing raw data. To provide basic data for the study of the adaptation of domestic animals to the extreme environment of the Qinghai Tibet Plateau, to explore the historical events of domestication, migration and expansion of the main domesticated animals in the region, and to further explore the adaptation mechanism of domesticated animals to the poor environment such as hypoxia, high cold and dry.
PENG Minsheng
The Pan Third Pole is sensitive to global climate change, its warming rate is more than twice of the global rate, and it is affected by the synergy of westerlies and monsoons. How to respond to climate change will have a profound impact on regional ecological security. However, the estimation of NPP by current products is still uncertain. For this reason, this product combines multi-source remote sensing data, including AVHRR NDVI, MODIS reflectivity data, a variety of climate variables (temperature, precipitation, radiation, VPD) and a large number of field measured data, and uses machine learning algorithm to retrieve the net primary production capacity of Pan third polar ecosystem.
WANG Tao
In order to describe the distribution pattern of the genetic diversity of the main domesticated animals in the Qinghai Tibet Plateau and its surrounding areas, and to clarify the related genetic background. In 2019, we extracted total DNA from 21 local chicken tissue samples collected in Pakistan and Thailand, built a database and re sequenced the genome. Sequencing produced a batch of 140g genome re sequencing raw data. To provide basic data for the study of the adaptation of domestic animals to the extreme environment of the Qinghai Tibet Plateau, to explore the historical events of domestication, migration and expansion of the main domesticated animals in the region, and to further explore the adaptation mechanism of domesticated animals to the poor environment such as hypoxia, high cold and dry.
LI Yan
In order to study the population evolution history and local adaptive genetic mechanism of the main domesticated equine animals in the Qinghai Tibet Plateau and its surrounding areas, and to establish the corresponding germplasm genetic resource bank. We sequenced the whole genome of 100 horse species collected in Qinghai Province, Tibet Autonomous Region and Xinjiang Autonomous Region, including Tibetan horses, Tibetan donkeys, Pingyuan donkeys and local breeds of Jiama plain. A lot of genomic data were generated by sequencing, which provided data for tracing the historical events of domestication, migration and expansion of the main domesticated equine animals in this area, and further exploring the adaptation mechanism of equine animals to the poor environment such as hypoxia, high cold and dry.
LI Yan
Geographical distribution of major ecological protection and construction projects on the Tibetan plateau. There are four main projects, i.e. forest protection and construction project, grassland protection and construction project, desertification control project, soil erosion comprehensive control project. Processing method: classified summary, and the county as a unit of the regional distribution.
Da Wei
These are the meteorological, soil, vegetation and other data observed by the Gongga Mountain Forest Ecosystem Test Station on the eastern margin of the Tibetan plateau, primarily from 2005 to 2008. Meteorological data: temperature, air pressure, relative humidity, dew point temperature, water pressure, ground temperature, soil temperature (5 cm, 10 cm, 20 cm, and 40 cm), 10-minute average wind, 10-minute maximum wind speed, precipitation, total radiation, net radiation. Tree layer biological observation data: diameter at breast height, tree height, life form Shrub layer biological observation data: tree number, height, coverage, life form, aboveground biomass, underground biomass Herb layer biological observation data: tree (strain) number, average height, coverage, life type, aboveground biomass, underground biomass Leaf area index: tree layer leaf area index, shrub layer leaf area index, grass layer leaf area index Soil organic matter and nutrients: soil organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, available nitrogen (alkali-hydrolysable nitrogen), available phosphorus, available potassium, slowly available potassium, PH value in aqueous solution Soil water content: depth, water content
WANG Xiaodan
The data is a fisheye photo above the interception barrel of the Picea crassifolia plot in the Tianlaochi small watershed of Qilian Mountain. The plot has a latitude and longitude of 38.44N, 99.91E, and an altitude of 2793m. Photo DSC_0008——DSC_0097 corresponds to Fisheye photos above interception barrels 1 to 90 respectively. The camera is directly above the interception barrel and the lens is 1m above the ground. It is used to estimate the cover or LAI of Qinghai spruce forest, and the pictures are processed with Gap Light Analyzer software.
ZHAO Chuanyan, MA Wenying
The data set mainly includes observation data of each tree in the super site, and the observation time is from June 2, 2008 to June 10, 2008. The super site is set around the Dayekou Guantan Forest Station. Since the size of the super site is 100m×100m, in order to facilitate the forest structure parameter survey, the super site is divided into 16 sub-sample sites, and tally forest measurement is performed in units of sub-samples. The tally forest measurement factors include: diameter, tree height, height under branch, crown width in transversal slope direction, crown width in up and down slope direction, and tindividual tree growth status. The measuring instruments are mainly: tape, diameter scale, laser altimeter, ultrasonic altimeter, range pole and compass. The data set also records the center point latitude and longitude coordinates of 16 sub-samples (measured by Z-MAX DGPS). The data set can be used for verification of remote sensing forest structure parameter extraction algorithm. The data set, together with other observation data of the super site, can be used for reconstruction of forest 3D scenes, establishment of active and passive remote sensing mechanism models, and simulation of remote sensing images,etc.
CHEN Erxue, BAI Lina, WANG Bengyu, TIAN Xin, LIU Qingwang, CAO Bin, Yang Yongtian, Zhihai Gao, Bingxiang Tan, GUO Zhifeng, WANG Xinyun, FU Anmin, ZHANG Zhiyu, NI Wenjian, WANG Qiang, BAO Yunfei, WANG Dianzhong, ZHANG Yang, ZHAO Liqiong, LIANG Dashuang, WANG Shunli, ZHAO Ming, LEI Jun, NIU Yun, LUO Longfa
The main contents of this data set are forest, shrub and grassland sample plot survey data.The fixed samples are located in the drainage ditch valley of qilian mountain and the dayaokou valley where the hydrology observation and test site of the water source conservation forest research institute of gansu province is located. The information of the sample is as follows: Number elevation quadrat size longitude latitude surface type G1 2715 20 × 20 100 ° 17 '12 "38 ° 33' 29" qinghai spruce forest G2 2800 20×36 100°17 '07 "38°33' 27" moss spruce forest G3 2840 20×20 100°17 '37 "38°33' 05" moss spruce forest G4 2952 20 × 20 100 ° 17 '59 "38 ° 32' 47" qinghai spruce forest G5 3015 20 × 20 100 ° 18 '06 "38 ° 32' 42" qinghai spruce forest G6 3100 20 × 20 100 ° 18 '13 "38 ° 32' 31" thicket qinghai spruce forest G7 3300 23.5 × 20 thickets qinghai spruce forest G8 2800 20×20 100°13 '30 "38°33' 29" moss spruce forest B1 2700 12.8×25 moss spruce forest B2 2800 20×20 100°17 '38 "38°32' 59" moss spruce forest B3 2900 20×20 100°17 '59 "38°32' 51" grass spruce forest B4 3028 20×20 100°17 '59 "38°32' 39" moss spruce forest B5 3097 20×20 100°18 '02 "38°32' 32" moss spruce forest B6 3195 20 × 20 100 ° 18 '06 "38 ° 32' 25" qinghai spruce forest B7 2762 20 × 20 100 ° 17 '08 "38 ° 33' 21" qinghai spruce forest B8 2730 20×20 100°17 '06 "38°33' 27" moss spruce forest GM1 3690 5×5 100°18 '02 "38°32' 02" caragana scrub (middle) GM2 3690 5×5 100°18 '02 "38°32' 02" caragana scrub (rare) GM3 3700 5×5 100°18 '03 "38°32' 03" caragana + jilaliu shrub (dense) GM4 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow thicket (middle) GM5 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow shrub (sparse) GM6 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow thicket (dense) GM7 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (middle) GM8 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (dense) GM9 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (rare) GM10 3400 5×5 100°18 '18 "38°32' 12" golden pheasant scrub (rare) GM11 3400 5×5 100°18 '18 "38°32' 12" golden pheasant + golden raspberry shrub (dense) GM12 3400 5×5 100°18 '18 "38°32' 12" golden pheasant scrub (rare) GM13 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" giraliu thicket GM14 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" caragana + jila shrub GM15 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" caragana + jila shrub YC3 2700 1×1 100°17 '14 "38°33' 33" needle thatch field YC4 2750 1×1 100°17 '18 "38°33' 32" needle thatch field YC5 2800 1×1 100°17 '21 "38°33' 33" needle thatch field YC6 2850 1×1 100°17 '25 "38°33' 33" needle thatch field YC7 2900 1×1 100°17 '31 "38°33' 32" aster + needle thatch field YC8 2950 1×1 100°17 '44 "38°33' 23" needle thatch field YC9 2980 1×1 100°17 '48 "38°33' 25" needle thatch field The sample geodesic tree data were surveyed from July to August 2007.The survey included: 1. Basic survey of sample plots in drainage ditch basin: A) sample land setting: sample land number, elevation, slope direction, slope position, slope, soil layer thickness, sample land size, longitude and latitude, community type, soil type, operation status, age B) survey of each wood in the sample plots: sample plot number, tree number, tree species, tree classification, chest diameter, tree height, undershoot height, crown radius 2. Soil profile survey record sheet Including forest/vegetation status, major tree species, forest age, soil name, surface soil erosion, parent rock and material, drainage conditions, land use history, soil profile (soil layer, moisture, color, texture, structure, root system, gravel content) 3. Standard ground cover factor Standard land area, dominant tree species, stand/vegetation origin, elevation, slope direction, slope position, slope, cutting and utilization method, afforestation land preparation type, survey method, canopy coverage, living ground cover, dead cover cover, litter thickness (undivided strata, semi-decomposed layer, decomposed layer) 4. Canopy survey: 5. Draft quadrat (1m×1m) survey record sheet Including species name, number, coverage, average height 6. Results of determination of soil physical properties in source forest of qilian mountain (land sample survey) Contains the soil physical properties measurement process (+ wet mud weight aluminum box, aluminum box, soil moisture content, suddenly bulk density, etc.), bringing biomass measurement (total fresh weight of shrub and herb, fresh weight of sample, sample dry weight, etc.), litter dry weight (including mosses) layer and the largest capacity calculation process (of moss and litter thickness, total fresh weight, fresh weight of samples, the dry weight of the sample, soaking for 24 h after heavy, maximum water holding capacity, the largest water depth, the biggest hold water rate, maximum moisture capacity) 7. Bush sample survey: Including species name, number, coverage, average height 8. Standard sample land setting and questionnaire for each wooden inspection ruler Including tree species, tree classification, age, chest diameter, number of height, undershoot height, crown radius 9. Litter layer survey record sheet Including litter (decomposed layer, semi-decomposed layer, decomposed layer) thickness 10. Update survey records: Including tree species, natural regeneration (height <30cm, height 31-50cm, height >51cm), artificial regeneration (height <30cm, height 31-50cm, height >51cm) This data set can provide ground measured data for remote sensing inversion of forest structure parameters.
WANG Shunli, LUO Longfa, WANG Rongxin, CHE Zongxi, JING Wenmao
The forest hydrology experimental area of Heihe River integrated remote sensing experiment includes the dense observation area of Dayekou basin and the dense observation area of Pailugou basin. Due to the concentrated distribution of the fixed sample plots in the drainage ditch basin, these sample plots lack of representativeness to the forest of the whole dayokou basin, so in June 2008, 43 temporary forest sample plots were set up in the whole dayokou basin. The data set is the ground observation data of the 43 temporary plots. In addition to the measurement and recording of stand status and site factors, Lai was also observed. The instruments used to measure each wood in the sample plot are mainly tape, DBH, flower pole, tree measuring instrument and compass. The DBH, tree height, height under branch, crown width in cross slope direction, crown width along slope direction and single tree growth were measured for each tree. WGS84 latitude and longitude coordinates of the center point of the sample plot were measured with different hand-held GPS, and the positioning error was about 5-30m. Other observation factors include: Forest Farm, slope direction, slope position, slope, soil thickness, canopy density, etc. The implementation time of these temporary sample plots is from 2 to 30 June 2008. The data set can provide ground data for the development of remote sensing inversion algorithm of forest structure parameters.
LING Feilong, HE Qisheng, ZHANG Xuelong, WANG Shunli, ZHAO Ming, LEI Jun, NIU Yun, LUO Longfa, CHEN Erxue
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn