Numerical test: The climate model used is the regional climate model RegCM4.1. RegCM4.1 developed by the Italian Research Center for Theoretical Physics (ICTP). In the test of regional model simulation, the horizontal resolution of the atmospheric model is 50 km and the vertical direction is 18 layers; Online coupling sand dust module. Sea surface temperature The sea surface temperature interpolated by OISST is used. The test includes two groups: the Middle Paleocene topographic test (MP,~60Ma BP, test name 60ma_regcm4.1_xxx. nc) and the Late Oligocene (LO,~25Ma BP, test name 25ma_regcM4.1_xxx. nc) The MP regional terrain modification test removed the northern part of the plateau and approximately replaced the terrain distribution of Asian land during the 60Ma period. BP regional terrain modification test only removed the terrain of Pamirs Plateau, approximately replacing the terrain distribution of Asian land during the 25Ma period. The sand and dust source areas of the two tests have not changed, and the sand and dust circulation process has been opened online. Output time: All tests were integrated for 22 years, using the average results of the last 20 years of each test. The data can be used to explain the difference of drought evolution in different regions around the plateau.
SUN Hui
The multi-scale dataset of environment and element-at-risk for the Qinghai-Tibet Plateau includes geomorphic data, normalized vegetation index data, annual temperature and rainfall data, and disaster bearing value grade data, covering an area of 6.56 million square kilometers. The data set is mainly prepared for disaster and risk assessment. Due to the huge coverage, the geomorphic data adopts 150m spatial resolution and other data adopts 1000m spatial resolution. Geomorphology, vegetation index, temperature and rainfall data are mainly produced by processing open source data, and disaster bearing value grade data are produced by superposition calculation, comprehensively considering population data, night light index, buildings and surface cover types.
TANG Chenxiao
Based on China's daily meteorological elements data set and National Geographic basic data, the extreme precipitation, extreme temperature, drought intensity, drought frequency and other indicators in Hengduan Mountain area were calculated by using rclimdex, nspei and bilinear interpolation methods. The data set includes basic data set of disaster pregnant environment, basic data set of extreme precipitation index, basic data set of extreme temperature index, basic data set of drought intensity and frequency. The data set can provide a basic index system for regional extreme high temperature, precipitation and drought risk assessment.
SUN Peng
I. Overview This data set contains the terrain data, soil data, meteorological data, land use data, NDVI data, etc. required for the operation of the IWEMS model. All maps and relevant point coordinates (weather stations) use the isometric projection UTM / WGS94 coordinate system. Ⅱ. Data processing description All maps and related point coordinates (weather stations) use the isometric projection UTM / WGS84 coordinate system. Ⅲ. Data content description The data content mainly includes: The basic terrain data includes the Cuneiform Desert (DEM) and the river network. The river network is used as the boundary for wind and sand transmission. The size of the DEM grid is 250 * 250 m. The river network was extracted using the ASTER-GDEM terrain data with the river burning method. Soil data, including soil physics, chemistry, and spatial distribution of soil types. It is derived from 1: 1 million soil database of China and converted to ESRI-grid format with a grid size of 250 * 250 m. Meteorological data, including daily data from Baotou, Dongsheng and Linhe meteorological stations around the Kubuqi Desert, from 2002 to 2010. Includes precipitation, wind speed and wind direction data. Land use data, 2000 land use data, scale is 1: 100,000. Convert it to ESRI-grid format with a grid size of 250 * 250 m. Ⅳ. Data usage description Evaluate wind and sand hazards along the Yellow River, estimate the amount of wind and sand entering the upper reaches of the Yellow River, and provide data support for establishing an early warning system for wind and sand hazards in the region.
XUE Xian, DU Heqiang
The Shiyang River Basin Information System thematic data set is one of the results of the technical assistance project “Optimization of Desertification Control in Gansu Province” assisted by the Asian Development Bank, including 5 folders including document, investigation_point, maps, photo, and spatial. Each file The folder contains several files. The document folder includes the target design, data processing, thematic summary report, and projection information.The gpspoint folder includes files recorded in shapefile point format sampled by gps according to different purposes.The maps folder contains Chinese, english, and fonts files. Folder, the first two folders represent 14 Chinese and English maps stored in A4 format and pdf format, and fonts contain some special fonts: the photo folder contains field survey digital photos stored in bmp format: spatial The folder contains the dem folder of the digital elevation model, the gansu folder of the outline map of Gansu Province and the Hexi Corridor, the generate folder of the site data file shapefile, the grid folder of the raster data of various geographic features, and the remote sensing image. image folder, meteoHydro folder for original site text data, and vector folder for vector data for various geographic features. The data includes: 1. DEM folder: 100m dem, hillshade, divided into GRID and geotif formats 2. Gansu folder: Gansu border, Hexi border 3. Grid folder: NDVI (vegetation index), lndchange (land transfer matrix), landscape86 (land landscape map in 86 years), landscape2k (land landscape map in 2000), Desertiftype (desert type landscape map), Desersevrt (desert type map ), Annprecip 4. Meteohydro folder: Minqin, Wuwei, Yongchang meteorological data (1) daily daily observation items: Airpress (humidity), Precipitation (radiation), Sunlight (sunlight), Temperature (temperature) ), Wind (wind speed) (2) Months (monthly): Airpress (air pressure), Humidity (humidity), Rain (precipitation), Sunlight (sunlight), Temperature (temperature), Wind (wind speed) (3) tendays: Airpress, Humidity, Rain, Sunlight, Temperature, Wind (4) years (year by year): Precipitation, Temperature 5. Vectro folder: (1) Admwhole (county boundary map), (2) Lake (lake), (3) Hydrasta (hydrological site), (4) Basin (watershed boundary), (5) Landscape2000 (land use 200 (Year), (6) landscape86 (land use 1986), (7) Meteosta (meteorological station), (8) Lakep (reservoir point), (9) Place (residential point), (10) Rainfallcontour (railway), ( 11) Rainfallcontour (rainfall contour map), (12) Road (highway), (13) Stream (water system map), (14) Town (county name), (15) Township (county township boundary), (16) Vegetation (vegetation map) Data projection information: PROJCS ["Albers", GEOGCS ["GCS_Krasovsky_1940", DATUM ["Not_specified_based_on_Krassowsky_1940_ellipsoid", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]] For detailed data description, please refer to the data file
LI Xin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn