The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the Hydrological Yearbook, the China Statistical Yearbook and the Institute of Geographic Sciences and Resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model with independent intellectual property rights is used for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. In Heihe River, Yarlung Zangbo River, the source of Yangtze River, the source of Yellow River, Yalong River, Minjiang River and Lancang River basins, 14 flow stations were selected to observe the daily flow data to develop and verify the model. The daily scale Naxi efficiency coefficient is above 0.7, and the correlation coefficient is above 0.8. The precipitation and temperature data output from 13 models and 4 scenarios provided by CMIP6 are used to post process the future precipitation and temperature data. The post processed precipitation and temperature driven hydrological model simulates the water cycle process from 2046 to 2065, and gives the possible future spatial and temporal distribution of 0.1 degree daily scale runoff across the Qinghai Tibet Plateau.
YE Aizhong
The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the hydrological Yearbook, the China Statistical Yearbook and the Institute of geographical science and resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model (DTVGM) with independent intellectual property rights is adopted for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. The daily flow data of 14 flow stations in Heihe River, Yarlung Zangbo River, Yangtze River source, Yellow River source, Yalong River, Minjiang River and Lancang River Basin were selected to draft and verify the model. The daily scale Naxi efficiency coefficient is above 0.7 and the correlation coefficient is above 0.8. The actual evaporation simulation is basically consistent with the station observation published by the Meteorological Bureau. The model simulates the water cycle process from 1998 to 2017. After verification, the spatial and temporal distribution of the actual evaporation (including soil evaporation and plant transpiration) on the 0.01 degree daily scale in the whole Tibetan Plateau is given.
YE Aizhong
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.
TANG Yin , TANG Qiuhong , WANG Ninglian, WU Yuwei
Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring vegetation. This dataset employed all available Landsat 5/7/8 data on the Qinghai-Tibetan Plateau (QTP) (> 100,000 scenes), and reconstructed high spatiotemporal NDVI time-series data (30-m and 8-d) during 2000-2020 on the TP (QTP-NDVI30) by using the MODIS-Landsat fusion algorithm (gap filling and Savitzky–Golay filtering;GF-SG). For the details of GF-SG, please refer to Chen et al. (2021). This dataset has been evaluated carefully. The quantitative assessments show that the reconstructed NDVI images have an average MAE value of 0.02, correlation coefficient of 0.96, and SSIM value of 0.94. We compared the reconstructed images in some typical areas with the PlanetScope 3-m images and found that the spatial details were well preserved by QTP-NDVI30. The geographic coordinate system of this dataset is GCS_WGS_84. The spatial range covers the vegetation area of the QTP, which is defined as the areas with average NDVI during July- September larger than 0.15.
CAO Ruyin , XU Zichao , CHEN Yang , SHEN Miaogen , CHEN Jin
As a key component of the earth's energy balance system, surface longwave downward radiation (LWDR) is of great significance to the study of ecology and climate change. With the continuous improvement of remote sensing estimation accuracy and spatial-temporal resolution and accuracy of reanalysis data, remote sensing and reanalysis data fusion will be a new way to further improve the reliability and spatial-temporal continuity of key parameters such as surface radiation. Considering the difference in spatial-temporal resolution and local regional accuracy of current multi-source LWDR data, the study combines the measured data of stations around the world, spatio-temporal fusion of remote sensing observation data (CERES) with reanalysis data ERA5 and GLDAS, and develops a high-precision surface longwave downward radiation dataset covering the world from 2000 to 2020 with a spatial-temporal resolution of 1h/0.25 °. The correlation coefficient (R), mean deviation error (bias) and root mean square error (RMSE) of the newly developed dataset and the site measured data verified on the land surface are 0.97, -0.95 Wm-2 and 22.38 Wm-2, respectively; On the ocean surface, it is 0.99, -0.88 Wm-2 and 10.96 Wm-2, respectively. In particular, compared with the existing data, the new dataset shows better accuracy and stability in the middle and low latitudes and complex terrain areas.
WANG Tianxing, WANG Shiyao
This dataset provides global soil texture data optimized by remote sensing estimation of wilting coefficient, with a spatial resolution of 0.25 degree. The dataset incorporates remote sensing-based (e.g., SMAP satellite) estimation of soil wilting point and uses the SCE-UA algorithm to optimize two prevalently used soil texture datasets (i.e., GSDE (Shangguan et al. 2014) and HWSD (Fischer et al., 2008)). Comparison results with in-situ observations (44 stations in North America) show that, the soil moisture and evaporative fraction simulation from the Noah-MP land surface model by using the optimized soil texture have been significantly improved.
HE Qing , LU Hui, ZHOU Jianhong , YANG Kun, YANG Kun, 阳坤, YANG Kun, SHI Jiancheng
This data set is the soil type map of China Pakistan Economic Corridor and Tianshan Mountains (1971-1981), which is derived from the world food and Agriculture Organization (FAO) harmonious world soil database (v1.2). The coverage is global, and the spatial resolution is 0.0833333 °. The soil data is the result of the cooperation between FAO and the world soil information agency, the Soil Research Institute of the Chinese Academy of Sciences and the joint research center of the European Commission. The unified world soil database is a 30 arc second grid database with more than 15000 different soil mapping units. It combines the existing soil information in the world with the information in the 1:5000000 scale world soil map (FAO, 1971-1981). The grid database consists of 21600 rows and 43200 columns, and uses a standardized structure to link attribute data with grid maps to display or query the composition of soil units and the characteristics of selected soil parameters. Soil type map can provide basic scientific reference for land use planning, geological disaster prevention and management.
PEI Yanqian
1) In mountainous areas, due to the complex topographic and geological background conditions, landslides are very easy to occur triggered by external factors such as rainfall, snow melting, earthquake and human engineering activities, resulting in the loss of life and property and the destruction of the natural environment. In order to meet the safety of project site construction, the rationality of land use planning and the urgent needs of disaster mitigation, it is necessary to carry out regional landslide sensitivity evaluation. When many different evaluation results are obtained by using a variety of different methods, how to effectively combine these results to obtain the optimal prediction is a technical problem that is still not difficult to solve at present. It is still very lack in determining the optimal strategy and operation execution of the optimal method for landslide sensitivity evaluation in a certain area. 2) Using the traditional classical multivariate classification technology, through the evaluation of model results and error quantification, the optimal evaluation model is combined to quickly realize the high-quality evaluation of regional landslide sensitivity. The source code is written based on the R language software platform. The user needs to prepare a local folder separately to read and store the software operation results. The user needs to remember the folder storage path and make corresponding settings in the software source code. 3) The source code designs two different modes to display the operation results of the model. The analysis results are output in the standard format of text and graphic format and the geospatial mode that needs spatial data and is displayed in the standard geographic format. 4) it is suitable for all people interested in landslide risk assessment. The software can be used efficiently by experienced researchers in Colleges and universities, and can also be used by government personnel and public welfare organizations in the field of land and environmental planning and management to obtain landslide sensitivity classification results conveniently, quickly, correctly and reliably. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development
YANG Zhongkang
Through the investigation of tourist spots, tourist routes and tourist areas at different levels, form photos and video data of tourism resources, tourism services and tourism facilities of scenic spots, scenic spots, corridors and important tourism transportation nodes, tourism villages and tourism towns, record the tourism development status, find problems in tourism development, and form corresponding ideas for the construction of world tourism destinations; The data sources are UAV, tachograph and camera, mobile phone and GPS, and are divided into different folders according to scenic spots and data categories; The data has been checked for many times to ensure its authenticity; This data can provide a traceable basis for the construction of world tourism destinations on the Qinghai Tibet Plateau.
SHI Shanshan
The data set is the watershed scale erosion rate of the eastern Tibet Based on 10Be. The data includes the first author, publication year, longitude and latitude and erosion rate. The data were collected in published journal articles, and the data has significant spatial distribution characteristics, and different research results are consistent with each other. The spatial characteristics of basin-wide erosion rate are always related to river geomorphic characteristics (such as steepness), climate and tectonic activities. Therefore, the systematic data set can provide important data support for the analysis of the main controlling factors of regional erosion rate , making it possible to quantify the contribution of climate and structure to the surface process in the region.
ZHANG Huiping
The dataset of soil evaporation in the middle and lower Heihe River Basin at the north of Qilian Mountains (2001-2015) is stimulated by the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW). HEIFLOW is a three-dimensional distributed eco-hydrological coupling model, integrating the Precipitation-Runoff Modeling System (PRMS) with the Modular Groundwater Flow Model (MODFLOW) and several ecological modules, which can completely describe the hydrological cycle and vegetation ecological process of the basin. For the modeling details of generating this data, please refer to Han et al. (2021), and for the technical details of HEIFLOW model, please refer to Han et al. (2021), Tian et al. (2018), and sun et al. (2018)
ZHENG Yi , HAN Feng , TIAN Yong
The dataset of leaf area index in the middle and lower Heihe River Basin at the north of Qilian Mountains (2001-2015) is stimulated by the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW). HEIFLOW is a three-dimensional distributed eco-hydrological coupling model, integrating the Precipitation-Runoff Modeling System (PRMS) with the Modular Groundwater Flow Model (MODFLOW) and several ecological modules, which can completely describe the hydrological cycle and vegetation ecological process of the basin. For the modeling details of generating this data, please refer to Han et al. (2021), and for the technical details of HEIFLOW model, please refer to Han et al. (2021), Tian et al. (2018), and sun et al. (2018)
ZHENG Yi , HAN Feng , TIAN Yong
The dataset of available soil water content in the middle and lower Heihe River Basin at the north of Qilian Mountains (2001-2015) is stimulated by the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW). HEIFLOW is a three-dimensional distributed eco-hydrological coupling model, integrating the Precipitation-Runoff Modeling System (PRMS) with the Modular Groundwater Flow Model (MODFLOW) and several ecological modules, which can completely describe the hydrological cycle and vegetation ecological process of the basin. For the modeling details of generating this data, please refer to Han et al. (2021), and for the technical details of HEIFLOW model, please refer to Han et al. (2021), Tian et al. (2018), and sun et al. (2018)
ZHENG Yi , HAN Feng , TIAN Yong
The dataset of vegetation transpiration in the middle and lower Heihe River Basin at the north of Qilian Mountains (2001-2015) is stimulated by the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW). HEIFLOW is a three-dimensional distributed eco-hydrological coupling model, integrating the Precipitation-Runoff Modeling System (PRMS) with the Modular Groundwater Flow Model (MODFLOW) and several ecological modules, which can completely describe the hydrological cycle and vegetation ecological process of the basin. For the modeling details of generating this data, please refer to Han et al. (2021), and for the technical details of HEIFLOW model, please refer to Han et al. (2021), Tian et al. (2018), and sun et al. (2018)
ZHENG Yi , HAN Feng , TIAN Yong
In situ stress refers to the stress existing in the earth's crust, that is, the force per unit area in the medium caused by rock deformation. This topic obtains in-situ stress data of major engineering areas through literature collection and borehole test in major engineering areas of Qinghai Tibet Plateau. The accuracy of the original data is reliable, and a special person is responsible for the quality review; After review by many people, the data integrity, position accuracy and attribute accuracy meet the requirements of relevant technical regulations and standards, and the quality is excellent and reliable. This data can provide basic data support for the study of the development law of major engineering disturbance disasters and major natural disasters in the Qinghai Tibet Plateau and other research work related to in-situ stress.
QI Shengwen
The data were collected from the sample plot of Haibei Alpine Meadow Ecosystem Research Station (101°19′E,37°36′N,3250m above sea level), which is located in the east section of Lenglongling, the North Branch of Qilian Mountain in the northeast corner of Qinghai Tibet Plateau. Alpine meadow is the main vegetation type in this area. The data recorded the light, air temperature and humidity, wind temperature and wind speed above the alpine plant canopy. The radiation intensity above the alpine plant canopy was recorded by LI-190R photosynthetic effective radiation sensor (LI-COR, Lincoln NE, USA) and LR8515 data collector (Hioki E. E. Co., Nagano, Japan), and the recording interval was once per second. S580-EX temperature and humidity recorder (Shenzhen Huatu) and universal anemometer are used (Beijing Tianjianhuayi) record the daily dynamics of air temperature and humidity, wind temperature and wind speed every three seconds. The recording time is from 10:00 on July 13 to 21:00 on August 17, Beijing time. Due to the need to use USB storage time and replace the battery every day, 3-5min of data is missing every day, and the missing time period is not fixed. At present, the data has not been published. Through research on the data The data can further explore the microenvironment of alpine plant leaves and its possible impact on leaf physiological response.
TANG Yanhong, ZHENG Tianyu
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
The data set records the statistical data of highway bridges in Qinghai Province in main years. The data are divided by row year, and grouped by aperture and service life. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains a data table, which is: Main Years: Highway Bridge 1990-2004.xls. In 2004, the super large bridge was re classified according to the national standard. There are six fields in the data table from 1990 to 2004 Field 1: Grand Bridge Field 2: Bridge Field 3: Medium Bridge Field 4: small bridge Field 5: tunnel Field 6: permanent Field 7: Highway Tunnel
Qinghai Provincial Bureau of Statistics
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn