The dataset contains microbial amplicon sequencing data from a total of 269 ice samples collected from 15 glaciers on the Tibetan Plateau from November 2016 to August 2020, including 24K Glacier (24K), Dongkemadi Glacier (DKMD), Dunde Glacier (DD), Jiemayangzong Glacier (JMYZ), Kuoqionggangri Glacier (KQGR), Laigu Glacier (LG), Palung 4 Glacier (PL4), Qiangtang 1 Glacier (QT), Qiangyong Glacier (QY), Quma Glacier (QM), Tanggula Glacier (TGL), Xiagangjiang Glacier (XGJ), Yala Glacier (YA), Zepugou Glacier (ZPG), ZhufengDongrongbu Glacier (ZF). The sampling areas ranged in latitude and longitude from 28.020°N to 38.100°N and 86.28°E to 95.651°E. The 16s rRNA gene was amplified by polymerase chain reaction (PCR) using 515F/907R (or 515F/806R) primers and sequenced with the Illumina Hiseq2500 sequencing platform to obtain raw data. The selected primer sequences were "515F_GTGYCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT" "515F_GTGCCAGCMGCCGCGG; 806R_ GGACTACHVGGGTWTCTAAT". The uploaded data include: sample number, sample description, sampling time, latitude and longitude coordinates, sample type, sequencing target, sequencing fragment, sequencing primer, sequencing platform, data format and other basic information. The sequencing data are stored in sequence file data format forward *.1.fq.gz and reverse *.2.fq.gz compressed files.
LIU Yongqin
The Asian water tower region, with the Qinghai-Tibet Plateau as the core, is the most widely distributed snow area on Earth except for the North and South Poles. The topographic heterogeneity of the Asian water tower region is great, and the snow in the region shows a thin snow layer and large patchy distribution, resulting in the high time-varying characteristics of the snow in the region, so there is an urgent need for daily-scale dynamic monitoring data of snow cover. This dataset is based on the MODIS global surface reflectance product, MO/YD09GA, using the Multiple Endmember Spectral Mixture Analysis- Automatic-selected Endmembers (MESMA -AGE) and interpolation algorithm based on spatial and temporal information to construct a MODIS day-by-day cloud-free snow cover dataset for the Asian water tower region from 2000 to 2020. With high spatial resolution Landsat images as “ground truth”, the root mean square error is 0.14, which is better than the two snow datasets MODSCAG and MOD10A1 commonly used internationally. The time series of this dataset is from February 26, 2000 to March 31, 2020, which can provide quantitative spatial distribution information of snowpack for mountain hydrological models, land surface models, and numerical weather forecasts.
JIANG Lingmei, PAN Fangbo , WANG Gongxue , PAN Jinmei, SHI Jiancheng, ZHANG Cheng
ChinaSA is raster data with a geospatial extent of 72 - 142E, 16 - 56N, using an equal latitude and longitude projection and a spatial resolution of 0.005°. The dataset covers the period from 1 January 2000 to 31 December 2020 with a temporal resolution of 1 day. The data contains six elements: black sky albedo (Black_Sky_Albedo), white sky albedo (White_Sky_Albedo), solar zenith angle (Solar_Zenith_Angle), pixel-level cloud label (Cloud_Mask), pixel-level forest pixel (Forest_Mask) and pixel-level retrieval label (Abnormal_Mask). Black_Sky_Albedo records the black sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. White_Sky_Albedo records the white sky albedo calculated by retrieved, with as a calculation factor of 0.0001 and a data range of 0-10000. Cloud_Mask records whether the pixel is cloud type, with a value of 0 indicating non-cloud and 1 indicating cloud. Forest_Mask records whether the pixel has been corrected as a forest type, with a value of 0 indicating that it has not been corrected and 1 indicating that it has been corrected. Abnormal_Mask records whether the retrieval of the black sky albedo and white sky albedo of the pixel is an anomaly of less than 0 or greater than 10000, with a value of 0 indicating a non-anomaly and 1 indicating an anomaly. ChinaSA was retrieved based on the MODIS land surface reflectance product MOD09GA, the snow cover product MOD10A1/MYD10A1 and the global digital elevation model SRTM. The snow albedo retrieval model was developed based on the ART model and produced using the GEE and local side interactions. To assess the retrieval quality of ChinaSA, the accuracy of the snow albedo product was verified using observations from in-situ meteorological stations and the sample observation validation method, and compared with the accuracy of four commonly used albedo products (GLASS, GlobAlbedo, MCD43A3 and SAD). The validation results show that ChinaSA outperforms the other products in all validations, with a root mean square error (RMSE) of less than 0.12, and can achieve a RMSE of 0.021 in forest areas.
XIAO Pengfeng , HU Rui , ZHANG Zheng , QIN Shen
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
This dataset is derived from the paper: Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15,4261-4279. ln this paper, the performance of the AVHRR GAC snowpack product in the Hindu Kush Himalayas is comprehensively evaluated for the first time on a long time scale (1982-2018) based on ground station data, Landsat data, and MODIS snowpack product, respectively, including the consistency of the accuracy/precision of the product over a long time series, and the consistency of the product with Landsat and MODIS snowpack data in terms of spatial distribution. The main factors affecting the accuracy of the AVHRR GAC snowpack product are also revealed.
WU Xiaodan
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
From 2015 to 2020, physicochemical properties of glacial snow and ice of NO.15 glacier (NO.15), 24K glacier (24K), Azha glacier(AZ), Cuopugou glacier(CPG), Demula glacier (DML), Dongrongbu glacier (DRB), Dongkemadi glacier (DKMD), Dunde glacier (DD), Guliya glacier (GLY), Hongqi Lapu glacier (HQLP), Kangxiwa River glacier (KXW), Kangwure glacier (KWR), Kuoqionggangri glacier (KQGR), Langadingri glacier (LADR), Mengdagangri glacier (MDGR), Mugagangqiong glacier (MGGQ), Muji glacier (MJ), Mushtag glacier (MSTG), Namunani glacier (NMNN), Nima glacier (NM), Nujiangyuantou (NJYT), Palung 4 glacier (PL4), Qiangtang No.1 glacier (QT), Qiangyong glacier (QY), Quma glacier (QM), Seqila glacier (SQL), Tanggula longxiazailongba glacier (LXZ), Xiagangjiang glacier (XGJ), Yala glacier (YL), Zepugou glacier (ZPG), Zhuxigou glacier (ZXG) on the Tibetan plateau, including DOC The samples were analyzed by 0.45 µm molecular membranes. Samples were filtered through 0.45 micron molecular membranes and tested using a Shimadzu TOC-L instrument, while ion concentrations were measured by ion chromatography. The unit of the indicator is mg/L. "n.a." means below the detection limit of the instrument, and "\" means missing value. Sheet1 in the table is "Physicochemical properties of glaciers and snow ice on the Tibetan Plateau (2015-2020)", and sheet2 is "Basic information of glaciers".
LIU Yongqin
Record the original collection process of glacier, runoff, soil and air microbial samples. 1) Collection of ice and snow microbial samples: wear clean gloves during collection and collect ice and snow into clean self sealing bags. 2) Collection of ice dust microbial samples: insert the hose into the bottom of the ice and snow cave, suck the sediment and melt water into the sampling bottle with a syringe, store them at low temperature and bring them back to the laboratory. Both the sediment and melt water on the top of the ice dust cave are used to extract environmental DNA. 3) Runoff includes ice runoff and glacier front runoff, and the runoff melt water is directly collected into the sampling bottle or water collection bag. 4) Collection of soil in front of Glacier: collect soil samples with shovel, put the soil into clean whirl Pak sampling bag after passing 2mm soil sieve, and then store it at low temperature for subsequent soil DNA extraction. 5) Air membrane sample collection: place the designed sampling device at the sampling point. The lower part of the device is a battery (continuous operation for 48h), and the upper part contains two filter membranes to collect air microorganisms for DNA extraction. 6) for real-time monitoring of physical and chemical properties in Glacier runoff and melt water, use YSI multi parameter water quality instrument to directly put it into the sample to be measured to obtain temperature, do, chlorophyll concentration, etc.
LIU Yongqin
Supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19070100). Tao Che, the director of this program, who comes from Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS. They used machine learning methods combined with multi-source gridded snow depth product data to derive a long-time series over the Northern Hemisphere. Firstly, the applicability of artificial neural network (ANN), support vector machine (SVM) and random forest (RF) method in snow depth fusion are compared. It is found that random forest method shows strong advantages in snow depth data fusion. Secondly, using the random forest method, combined with remote sensing snow depth products such as AMSR-E, AMSR-2, NHSD and GlobSnow and reanalysis data such as ERA-Interim and MERRA-2. These gridded snow depth products and environmental factor variables are used as the input independent variables of the model. In situ observations of China Meteorological Station (945), Russia Meteorological Station (620), Russian snow survey data (514), and global historical meteorological network (41261) are used as reference truth to train and verify the model. The daily gridded snow depth dataset of the snow hydrological year from 1980 to 2019 (September 1 of the previous year to May 31 of the current year) is prepared on the cloud platform provided by the CASEarth. Since the passive microwave brightness temperature data from 1980 to 1987 is the data of every other day, there will be a small number of missing trips in the data during this period. Using the ESM-SnowMIP and independent ground observation data for verification, the quality of the fusion data set has been improved. According to the comparison between the ground observation data and the snow depth products before fusion, the determination coefficient (R2) of the fusion data is increased from 0.23 (GlobSnow snow depth product) to 0.81, and the corresponding root mean square error (RMSE) and mean absolute error (MAE) are also reduced to 7.7 cm and 2.7 cm.
CHE Tao, HU Yanxing, DAI Liyun, XIAO Lin
China's daily snow depth simulation and prediction data set is the estimated daily snow depth data of China in the future based on the nex-gdpp model data set. The artificial neural network model of snow depth simulation takes the maximum temperature, minimum temperature, precipitation data and snow depth data of the day as the input layer of the model, The snow depth data of the next day is used as the target layer of the model to build the model, and then the snow depth simulation model is trained and verified by using the data of the national meteorological station. The model verification results show that the iterative space-time simulation ability of the model is good; The spatial correlations of the simulated and verified values of cumulative snow cover duration and cumulative snow depth are 0.97 and 0.87, and the temporal and spatial correlations of cumulative snow depth are 0.92 and 0.91, respectively. Based on the optimal model, this model is used to iteratively simulate the daily snow depth data in China in the future. The data set can provide data support for future snow disaster risk assessment, snow cover change research and climate change research in China. The basic information of the data is as follows: historical reference period (1986-2005) and future (2016-2065), as well as rcp4.5 and rcp8.5 scenarios and 20 climate models. Its spatial resolution is 0.25 ° * 0.25 °. The projection mode of the data is ease GR, and the data storage format is NC format. The following is the data file information in NC Time: duration (unit: day) Lon = 320 matrix, 320 columns in total Lat = 160 matrix, 160 rows in total X Dimension: Xmin = 60.125; // Coordinates of the corner points of the lower left corner grid in the X direction of the matrix Y Dimension: Ymin = 15.125; // Coordinates of the corner points of the grid at the lower left corner of the Y-axis of the matrix
CHEN Hongju, YANG Jianping, DING Yongjian
Snow water equivalent (SWE) is an important parameter of the surface hydrological model and climate model. The data is based on the ridge regression algorithm of machine learning, which integrates a variety of existing snow water equivalent data products to form a set of snow water equivalent data products with continuous time series and high accuracy. The spatial range of the data is Pan-Arctic (45 N° to 90 N °), The data time series is 1979-2019. The dataset is expected to provide more accurate snow water equivalent data for the hydrological and climate model, and provide data support for cryosphere change and global change.
LI Hongyi, SHAO Donghang, LI Haojie, WANG Weiguo, MA Yuan, LEI Huajin
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
This data set comes from the book: glaciers in Hengduan Mountain area, which belongs to the series of scientific investigation in Hengduan Mountain Area of Qinghai Tibet Plateau. The chief editor is Li Jijun, the deputy chief editor is Su Zhen, and the guiding unit is Institute of geography, Chinese Academy of Sciences. The research team of the book is the Qinghai Tibet Plateau comprehensive research team of the Chinese Academy of Sciences, and the publishing house is Science Press. Due to abundant rainfall and deep snow cover in some areas of Hengduan Mountain. Avalanche, wind blown snow and abnormal snowfall have become a common natural disaster, which has caused great damage to the work and life of local residents. This book makes a detailed record of the snow disaster in Hengduanshan area. The data includes two workbooks and two pictures, which are the statistical table of snow damage status and damage degree, the regional characteristics of avalanche, the topographic cutting degree map of Western Sichuan, Northern Yunnan and southeastern Tibet, and the damage scope map of Hengduanshan avalanche.
LI Jijun
High Mountain Asia is the third largest cryosphere on earth other than the Antarctic and Arctic regions. The large amounts of glaciers and snow over the High Mountain Asia play an important role not only on global water cycle but also on water resources and ecology of the arid regions of central Asia. The snowline, as the lower boundary of the snow covered area at the end of melting season, its altitude changes can directly reflect the changes in snow and glaciers. The snowline altitude provides a possibility to rapidly obtain a proxy for their equilibrium line altitude (ELA) which in turn is an indicator for the glacier mass balance. In this dataset, the daily MODIS snow cover products from 2001 to 2019 are used as the main data source. The cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. The altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the hypsometric (area-elevation) curve. Finally, the 30km gridded dataset of snowline altitude in the High Mountain Asia during 2001-2019 is generated. This dataset can provide data support for the study of cryosphere and climate change over the High Mountain Asia.
TANG Zhiguang, DENG Gang, WANG Xiaoru
The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,
DAI Liyun
High Asia is very sensitive to climate change, and is a hot area of global change research. The changes of temperature and precipitation will be reflected in the freezing and thawing time of ice and snow. Satellite microwave remote sensing can provide continuous monitoring ability of ice and snow surface state in time and space. When a small part of ice and snow begins to melt, micro liquid water will also be reflected in active and passive microwave remote sensing signals. In the microwave band, the dielectric constant of ice and liquid water is very different, so it provides a basic theory for the microwave remote sensing monitoring of ice and snow melting. In the case of passive microwave, when ice and snow begin to melt and liquid water appears, its absorption and emissivity increase rapidly, so its emissivity, brightness temperature and backscatter coefficient will also change rapidly. This data set is the initial time of ice and snow melting in the high Asia region retrieved by using the satellite microwave radiometer and scatterometer observations from 1979 to 2018. The passive microwave remote sensing data are SMMR on satellite (1979-1987) and SSM / i-ssmis radiometer on DMSP (1988 present). The active microwave remote sensing data is the QuikSCAT satellite scatterometer (2000-2009).
Xiong Chuan, SHI Jiancheng, YAO Ruzhen, LEI Yonghui, PAN Jinmei
This data includes the daily average water temperature data at different depths of Nam Co Lake in Tibet which is obtained through field monitoring. The data is continuously recorded by deploying the water quality multi-parameter sonde and temperature thermistors in the water with the resolution of 10 minutes and 2 hours, respectively, and the daily average water temperature is calculated based on the original observed data. The instruments and methods used are very mature and data processing is strictly controlled to ensure the authenticity and reliability of the data; the data has been used in the basic research of physical limnology such as the study of water thermal stratification, the study of lake-air heat balance, etc., and to validate the lake water temperature data derived from remote sensing and different lake models studies. The data can be used in physical limnology, hydrology, lake-air interaction, remote sensing data assimilation verification and lake model research.
WANG Junbo
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn