CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
As a powerful heat source, the Tibetan Plateau (TP) affects the onset, advance and retreat of the Asian monsoon, and the interaction between the westerly belt and the monsoon belt. In order to study the variation of TP thermal effect and its influence on the surrounding climate, the basic data related to TP heat source are needed. This data set is composed of monthly basic heat source data of the TP and its surrounding areas calculated from reanalysis data, and its horizontal range covers 40°E-180° and 20°S-80°N. The spatial resolution is 2.5 ° x2.5 °, and the datasets mainly included ERA5 and NCEP/NCAR reanalysis data.
LI Qingquan
The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
The Tibetan Plateau (TP) is the largest glacier enrichment area in the middle and low latitudes except the South Arctic and Greenland. The solid water body glaciers and liquid water bodies lakes and rivers together form the Asian Water Tower. The thermal and dynamic effects of the TP and their variability are one of the main driving forces for the TP to affect the Asian monsoon and global atmospheric circulation anomalies. To study the thermal properties of the TP itself and its feedback effect, it is necessary to use the results of climate model experiments to carry out the 100-year historical examination of the TP and its surrounding areas and the future 100-year prediction (temperature, precipitation, radiation, etc.). This dataset consists of grid point temperature, precipitation, radiation and other data of the TP and its surrounding areas. Its horizontal range covers 40 ° E-180 °, 20 ° S-80 ° N, and the time resolution includes annual and seasonal average. The data are based on the results of the BCC-CSM2-MR model test conducted by the National Climate Center of China in the Coupled Model Intercomparison Project Phase 6 (CMIP6), including historical, SSP126, SSP245, SSP370, and SSP585 experiments. According to the bilinear interpolation method, the data are uniformly interpolated to the resolution level of 1 ° x1 °. The data can provide basic information on regional climate and water cycle changes for the second TP investigation period, provide reference for the field investigation results, and study the possible change mechanism.
LI Qingquan
The data set is a numerical simulation data set based on CESM2.1.3 mode. The data set is global multi scenario monthly climate data. The spatial resolution is f19_ G17 atmosphere/land is 1.9x2.5 degrees, from January 2015 to December 2010, and the data is in NETCDF format. The data set includes historical data from 1850-2014 (referred to as Hist for short) and SSP scenarios (SSP126, SSP245, SSP370, SSP585). Each scenario includes three sets of climate data (default emission data CMIP6 (referred to as CMIP6 for short), China's carbon neutral CNCN (referred to as CNCN for short) CO2 emissions, and China's CH4 and N2O changes with CNCN, which are further used to drive the CESM (referred to as CNCNext for short)), The data set contains a geospatial range of - 90 ° N – 90 ° N and - 180 ° E – 180 ° E.
LI Longhui
(1) Data content: the annual mean Northern Annular mode index and the Northern Annular mode index from 1500 to 2000; (2) Data source and processing method: this data is independently produced by the author. It is based on PAGES2k data set and reconstructed by machine learning model (random forest, extreme tree, Light GBM and catboost). (3) Data quality description: the data set has high consistency with multiple instrumental data during the observed period, and the reconstruction is better. The data can be used to study the change and mechanism of the main atmospheric circulation in the northern and southern hemispheres on multiple time scales (interannual, interdecadal and multidecadal).
YANG Jiao
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. As the primary parameter in the surface energy balance, the land surface temperature represents the degree of energy and water exchange between the earth and the atmosphere, and is widely used in the research of climatology, hydrology and ecology. The annual average surface land temperature is obtained by using the four day and night observations of Aqua and Terra. Therefore, the 8-day land surface temperature synthesis products MOD11A2 and MYD11A2 with a resolution of 1km were downloaded first, and then the data were batch projected by MRT (MODIS Reprojection Tool). Finally, the annual average MODIS land surface temperature data after 2010 was calculated by IDL.
NIU Fujun
The original TIFF files of figure 1-100 of the monograph 'The Batrisini of Tibet: unveiling an enigmatic ant-loving beetle diversity at Earth’s “Third Pole” (Coleoptera, Staphylinidae, Pselaphinae)' are uploaded.
YIN Ziwei
This dataset is based on the Tibet Statistical Yearbook and Qinghai Statistical Yearbook (2020). The two books contain statistical data on the economic and social development of the Tibet Autonomous Region and Qinghai Province since 2019, mainly from 1951 to 2020. Extract the agricultural aspects, from the basic situation of rural areas and agriculture, the basic situation of rural areas, rural employees, the total output value of agriculture, forestry, animal husbandry and fishery in sub-regional cities, the sown area of main crops, the output of main agricultural products, the output per unit area of main agricultural products, and the sown area of crops It is an important statistical data for people from all walks of life at home and abroad to understand the Qinghai-Tibet Plateau and the Qinghai-Tibet Plateau.
TANG Yawei TANG Yawei
This data comes from a random questionnaire survey conducted in the one-river-two-river region of Tibet, southeastern Tibet, and Hengduan mountainous area of eastern Sichuan and Tibet during July-August 2020. The data set mainly includes agricultural waste utilization data (straw utilization and livestock and poultry wastes). Utilization methods), straw utilization methods mainly include returning to the field, fuel, feed and compost, and livestock and poultry manure utilization methods mainly include fuel and fertilizer. The interviewees were mainly adults who were familiar with the family situation. In some villages, the output was calculated in small groups. The questionnaire design is based on the principles of scientificity, applicability, feasibility, typicality and specificity, and the "Household Questionnaire" is designed for the above areas. In order to ensure the reliability and validity of the questionnaire design content, the questionnaire was pre-investigated before the formal investigation, and there were problems in further modifying and improving the questionnaire. Before the official start of the questionnaire, the investigators were given the explanation of the content of the questionnaire and the training of investigation skills.
SONG Dagang SONG Dagang
According to the data of three future scenarios of CMIP5 (RCP2.6、RCP4.5、RCP8.5), the spatial variation characteristics and temporal variation trend of the global mean annual air temperature from 2006 to 2100 are analyzed. Under rcp2.6 scenario, the mean annual air temperature shows an increasing trend, with the growth rate ranging from 0.0 ° c/decade to 0.2 ° c/decade (P<0.05), the growth in high latitude regions is faster, ranging from 0.1 ° c/decade to 0.2 ° C / decade. Based on the spatial and temporal characteristics of the mean annual air temperature in the northern hemisphere in the 21st century, under different scenarios, the mean annual air temperature shows a warming trend, and the high latitudes show a more sensitive and rapid growth.
NIU Fujun
This dataset is about the historical yield data (yield per unit area and sown area) of the main crops (hull-less barley and wheat) on Tibetan Plateau between years 1988-2018, covering some prefectures and cities located in Tibetan Plateau. The data are obtained from Tibet Statistical Yearbook, Qinghai Statistical Yearbook, Sichuan Statistical Yearbook, Gansu Statistical Yearbook, Yunnan Statistical Yearbook and the aba Tibetan and Qiang Autonomous Prefecture and Ganzi Tibetan Autonomous Prefecture Agriculture and Animal Husbandry Bureau with the same accuracy. Hull-less barley and wheat are the main crops on the Tibetan Plateau. This data set is of great value for the study of food security and agricultural production on Tibetan Plateau.
PAN Zhifen
The data from the Digital Mountain Map of China depicts the spatial pattern and complex morphological characteristics of mountains in China from a macro scale, including the mountains’ spatial distribution, classification, morphological elements and area ratio. It is a set of basic data that can be used for mountain zoning, mountain genetic classification and resource environment correlation analysis. Mountains carry great natural resource supply, provide ecological service and regulation functions, and play an important part in eco-civilization construction and socioeconomic development in China. Lately,Prof. Li Ainong of the Institute of Mountain Hazards and Environment, CAS, developed this data set based on the spatial definition of mountains, an a topography adaptive slide window method for the relief amplitude. The data include: (1) Spatial distribution of mountains in China; (2) Mountain classification; (3) Main mountain ranges (with range alignment, relief grade and ridge morphology); (4)Main mountain peaks; (5)Mountain proportion table of the provinces/autonomous regions/municipalities of China; (6) Contour zoning data; (7) General situation of mountain formation; (8)Mountain division and zoning data; (9) List of main mountain peaks. The spatial resolution of the original DEM source is about 90m. And the boundaries of mountains have been revised with multisource remote sensing data, which has good spatial consistency with the relief shading map. The cartographic generalization accuracy of mountain ranges and relevant features is 1:1 000 000. Mountain features in this data set have higher spatial resolution and pertinence, which are available for the zonality of mountain environment and mountain hazards, and the spatial analysis for ecological, production and living spaces in mountain areas, surpporting macro decision-making on mountain areas' development in China. p
NAN Xi , LI Ainong , DENG Wei
1) Soil environmental quality data of typical industrial parks in Huangshui basin of Qinghai Province provide basic support for soil pollution control caused by regional industrial activities; 2) The data source is the soil samples of typical areas in Huangshui River Basin. After collection, the samples are quickly stored in the refrigerator at - 4 ℃ and sent to the laboratory as soon as possible. After pretreatment, the relevant parameters are tested; 3) The process of sample collection and transportation meets the specifications, and the experimental detection process strictly follows the relevant standards. Due to the changes of various factors of soil environment, the results are only aimed at the investigation results; 4) The data can be used to analyze regional soil pollution and heavy metal risk assessment;
WANG Lingqing
This data is the plant diversity and distribution data of chnz016 grid on Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of plants in this grid. The data is obtained from e scientific research website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list and specific distribution information of all plants in this flora. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region.
DENG Tao
This data is the plant diversity and distribution data of chnac006 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of plants in this grid. The data is obtained from e scientific research website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list and specific distribution information of more than 600 species of plants in more than 200 genera and 91 families in this flora. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region.
DENG Tao
1. The total number is the unified number of the survey year, such as 17-001 (the first survey point in 2017), and the field number is the single field number. 2. Time: Beijing time at the time of measurement, such as: 13:25, August 1, 2017 (13:25, August 1, 2017). 3. Geographical location: the longitude and latitude of the measuring point, such as 29.6584101.0884 (29.6584 ° n, 101.0884 ° E), which is measured by Garmin 63sc GPS in the field. 4. Altitude: the absolute altitude of the measuring point, such as 4500m (4500m above sea level), is measured by Garmin 63sc GPS in the field with an accuracy of 1m. 5. Measured vegetation coverage (%): measured in the field with quadrat (1000 m * 1000 m). 6. Atmospheric pressure: measured by dph-103 intelligent digital temperature and humidity barometer in the field, such as 651.7kpa, accuracy: 0.1 kPa. 7. Air temperature: measured by dph-103 intelligent digital temperature, humidity and barometer in the field, such as 15.61 ℃, accuracy: 0.01 ℃. 8. Relative humidity: measured by dph-103 intelligent digital temperature, humidity and barometer in the field, such as 79.1%, accuracy: 0.1%. 9. Relative oxygen content: measured by td400-sh-o2 portable oxygen detector in the field, such as 20.16%, accuracy: 0.01%. Among them, the altitude of sampling points 17-001 to 17-065 is measured by Garmin Oregon 450 GPS with an accuracy of 1 m; The atmospheric pressure is measured by Casio prg-130gc barometer with an accuracy of 5 HPA; The relative oxygen content is measured by cy-12c digital oxygen meter, with a range of 0-50.0%, a resolution of 0.1% and an accuracy of ± 1%.
SHI Peijun
This data is the plant diversity and distribution data of chnyb013 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of plants in this grid. The data is obtained from e scientific research website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered a large number of plant catalogues and specific distribution information in this flora. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region.
DENG Tao
This data is the plant diversity and distribution data of the chnab005 grid on the Qinghai Tibet Plateau, including the Chinese name, Latin name, latitude and longitude, altitude, collection number, number of molecular materials, number of specimens, administrative division, small place, collector, collection time and creator of the plants in this grid. This data is obtained from e-Science website( http://ekk.kib.ac.cn/web/index/#/ )And partially complete the identification. This data has covered the list of plants in this flora and the specific distribution information. This data can be used not only to study the floristic nature of this region, but also to explore the horizontal and vertical gradient pattern of plants in this region. What is different from last year is that the grid with the most scientific research data this year has changed, which may be affected by the epidemic or the environment.
DENG Tao
The Wuyu Basin is bounded by the Gangdese Mountains to the north and the Yarlung Tsangpo River to the south, and is a representative basin to study the Cenozoic tectonism of the southern Tibet. The sedimentary strata in the Wuyu Basin include the Paleocene-Eocene Linzizong Group volcanics and the Oligocene Rigongla Formation (Fm.) volcanics, the Miocene lacustrine sediments of the Mangxiang Fm. and Laiqing Fm. volcanics, the late Miocene-Pliocene Wuyu Fm., and the Pleistocene Dazi Fm. Five sandstone samples from the Mangxiang Fm., Wuyu Fm. and Dazi Fm. and one modern Wuyu reiver sand sample were collected for detrital zircon U-Pb dating using the LA-ICP-MS method. Detrital zircon U-Pb ages in the Mangxiang Fm. show a large cluster at 45-80 Ma; those in the Wuyu Fm. show a large cluster at 8-15 Ma and a subsidiary cluster at 45-70 Ma; those in the Dazi Fm. show three large clusters at 45-65 Ma, 105-150 Ma and 167-238 Ma; and those in modern Wuyu river show a large cluster at 8-15 Ma and a subsidiary cluster at 45-65 Ma (Figure 1). Late Cretaceous-early Eocene zircons in all samples are consistent with the most prominent stage of magmatism of the Gangdese Mountains; the 8-15 Ma zircons in the Wuyu Fm. and modern Wuyu river are consistent with the magmatism of the Laiqing Fm.; and the Triassic-Jurassic zircons in the Dazi Fm. are consistent with the magmatism of the central Lhasa terrane. The results of detrital zircon U-Pb ages and sedimentary facies analyses in the Wuyu Basin indicate that the southern Tibetan Plateau suffered multi-stage tectonism-magmatism since the India-Asia collision: (1) Paleogene Linzizong Group-Rigongla Fm. volcanics; (2) tectonism-magmatism at ~15 Ma ended the lacustrine sediments of the Mangxiang Fm. and resulted in volcanism of the Laiqing Fm.; (3) tectonism at ~8 Ma resulted in the volcanic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm.; (4) the Wuyu Basin formed braided river and received sediments from the central Lhasa terrane to its north at ~2.5 Ma. The geomorphic pattern of the southern Tibet has gradually formed since the Quaternary.
MENG Qingquan MENG Qingquan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn