The photos contain the disaster spots and work photos of the scientific research every day (Juue 15th, 2021-July 24 6th, 2021), and the questionnaire of each disaster spot (including landslide, collapse, debris flow, etc.). The disaster spots recorded every day are marked on the map, converted into KMZ format, and the distribution of disaster spots in the scientific research area is analyzed on GIS. The distribution of disaster points shows that rainfall-induced landslide, debirs flow and rockfall, flash flood disaster points are major located along along the eastern route and the intensity are dense in there. In addition, the transportation infrastructure and popultion are relative densely distributed along the earstern route, may be resulte in high comprehensively disaster risk.In the western route, there are major distributed sand disaster, also mass movement disasters such as landslde and rockfall. The above pictures, vedios, disaster point map and route map are recorded. The above data are intuitive data for researching scientific expeditions, also are the key input data and examine data. In addition, they are fundamental significance for objectively judging the types and distribution of disasters in the scientific expedition area, as well as disaster prevention and mitigation measures.
ZHANG Zhengtao
This data includes: 30m mountain flood comprehensive risk data, 30m mountain flood risk data, 30m mountain flood disaster bearing body data and 30m mountain flood vulnerability distribution data in the Himalayas. Based on the results of national investigation and evaluation of mountain flood disasters, the distribution of comprehensive risk indicators of mountain flood disasters in the study area, the distribution of mountain flood risk indicators in each administrative village, the distribution of mountain flood disaster bearing body indicators and the distribution of mountain flood vulnerability indicators are obtained, forming the comprehensive risk distribution data of mountain flood disasters in the Himalayas. This data is helpful to analyze the spatial variation characteristics and distribution law of mountain flood disaster. The zoning of mountain flood disaster risk plays a guiding role in the flood control management and deployment of flood control emergency departments.
WANG Zhonggen
This data set includes 1:1 million historical mountain flood disaster data in the Himalayas, 1:1 million mountain flood prevention and control area distribution data in the Himalayas, 1:1 million mountain flood zoning distribution data in the Himalayas, and 1:1 million key prevention and control area distribution data in the Himalayas. All data are based on the results of national mountain flood disaster investigation and evaluation, and obtain the information of historical mountain flood disaster occurrence time, location, disaster type, cause, longitude, latitude, quantity, distribution and number of victims in the study area, as well as the distribution data of mountain flood zoning, prevention and control area and key prevention and control areas in the study area, so as to form the distribution data set of historical mountain flood disaster in the Himalayas.
WANG Zhonggen
To fully implement the measures for the administration of the scientific data for the "government budget funding for formation of the scientific data shall, in accordance with the open as normal, not open for exception principle, by the competent department to organize the formulation of scientific data resources directory, the directory should be timely access to the national data sharing and data exchange platform, open to society and relevant departments to share, In the spirit of unimpeded military-civilian sharing channels for scientific data, and in accordance with the relevant requirements of relevant exchange standards and specifications, this code is now established for the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau. The main drafting unit of this code: Institute of Geographic Sciences and Natural Resources Research, CAS. Main draftsman of this specification: project group 9 of the second Comprehensive Scientific investigation and research Mission of qinghai-Tibet Plateau.
YANG Yaping
Log and image are unique and important primary data of field research, and also an important part of scientific data. In order to further standardize the collection, collation, warehousing and exchange of expedition logs and image data of the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau, and ensure the operability, organization and standardization of the warehousing of expedition logs and image data, this technical specification is formulated. This specification provides procedures and methods for the collection and collation of investigation logs and image data, including work preparation, field investigation, data collation and other requirements, in order to better serve the storage of investigation data. This specification applies to the collation and storage of log and image data of field investigations organized by the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau, and other relevant data formed by field investigations can also be carried out by reference to this technical specification.
YANG Yaping
Flood risk assessment data along Sichuan Tibet railway, including natural indicators, risk, vulnerability and risk assessment data. Data source: obtained from the earth big data science and Engineering website; Calculated and obtained according to DEM downloaded by USGS. Processing method: the maximum 24h precipitation with five-year return period is obtained by calculating the frequency according to the annual maximum 24h precipitation sequence in the assessment area; The river network index is obtained by cutting and processing the level 6 water network of Haihe River version in the assessment area; The risk is obtained by calculating the maximum 24h precipitation once in five years and the assignment of river network index; Vulnerability is obtained by weighting the data of population density, transportation cost and total GDP; Risk data is calculated based on risk and vulnerability weighting. Formulate digital processing operation specifications. In the process of processing, the operators are required to strictly abide by the operation specifications, and a special person is responsible for the quality review. The data integrity, logical consistency, position accuracy, attribute accuracy, edge connection accuracy and current situation all meet the requirements of relevant technical regulations and standards formulated by the State Bureau of Surveying and mapping, and the quality is excellent and reliable.
WANG Zhonggen
1) The work of automatically dividing a wide and complex geospatial area or even a complete watershed into repeatable and geomorphically consistent topographic units is still in the stage of theoretical concept, and there are great challenges in practical operation. Terrain unit is a further subdivision of topography and geomorphology, which can ensure the maximum uniformity of geomorphic features in slope unit and the maximum heterogeneity between different units. It is suitable for geomorphic or hydrological modeling, landslide detection in remote sensing images, landslide sensitivity analysis and geological disaster risk assessment. 2) Slope unit is an important type of topographic unit. Slope unit is defined as the area surrounded by watershed and catchment line. In fact, the area surrounded by watershed and catchment line is often multiple slopes or even a small watershed. Theoretically, each slope unit needs to ensure the maximum internal homogeneity and the maximum heterogeneity between different units. The slope unit is an area with obviously different topographic characteristics from the adjacent area. These topographic characteristics can be based on the characteristics of catchment or drainage boundary, slope and slope direction, such as ridge line, valley line, platform boundary, valley bottom boundary and other geomorphic boundaries. According to the high-precision digital elevation model, the slope unit with appropriate scale and quality can be drawn manually, but the manual drawing method is time-consuming and error prone. The quality of the divided slope unit depends on the subjective experience of experts, which is suitable for small-scale areas and has no wide and universal application value. Aiming at the gap in practical operation in this field, we propose an innovative modeling software system to realize the optimal division of slope units. Automatic division system of slope unit based on confluence analysis and slope direction division v1 0, written in Python programming language, runs and calculates as the grass GIS interpolation module, and realizes the automatic division of slope units in a given digital elevation data and a set of predefined parameters. 4) Based on python programming language, the code is flexible and changeable, which is suitable for scientific personnel with different professional knowledge to make a wide range of customization and personalized customization. In addition, the software can provide high-quality slope unit division results, reflect the main geomorphic characteristics of the region, and provide a based evaluation unit for fine landslide disaster evaluation and prediction. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development.
YANG Zhongkang
1) In mountainous areas, due to the complex topographic and geological background conditions, landslides are very easy to occur triggered by external factors such as rainfall, snow melting, earthquake and human engineering activities, resulting in the loss of life and property and the destruction of the natural environment. In order to meet the safety of project site construction, the rationality of land use planning and the urgent needs of disaster mitigation, it is necessary to carry out regional landslide sensitivity evaluation. When many different evaluation results are obtained by using a variety of different methods, how to effectively combine these results to obtain the optimal prediction is a technical problem that is still not difficult to solve at present. It is still very lack in determining the optimal strategy and operation execution of the optimal method for landslide sensitivity evaluation in a certain area. 2) Using the traditional classical multivariate classification technology, through the evaluation of model results and error quantification, the optimal evaluation model is combined to quickly realize the high-quality evaluation of regional landslide sensitivity. The source code is written based on the R language software platform. The user needs to prepare a local folder separately to read and store the software operation results. The user needs to remember the folder storage path and make corresponding settings in the software source code. 3) The source code designs two different modes to display the operation results of the model. The analysis results are output in the standard format of text and graphic format and the geospatial mode that needs spatial data and is displayed in the standard geographic format. 4) it is suitable for all people interested in landslide risk assessment. The software can be used efficiently by experienced researchers in Colleges and universities, and can also be used by government personnel and public welfare organizations in the field of land and environmental planning and management to obtain landslide sensitivity classification results conveniently, quickly, correctly and reliably. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development
YANG Zhongkang
Landslide drainage and seepage prevention is a common technology for the treatment of landslide source area in Qinghai Tibet Plateau. The existing siphon drainage technology is inefficient when applied to high altitude areas. Through improvement, a variable pipe diameter and high head siphon drainage technology is proposed to solve the deep drainage problem of landslide in high altitude and low pressure areas. 12 groups of siphon drainage tests with variable pipe diameter were carried out to verify the correctness of the theoretical velocity calculation formula. The test results show that the theoretical calculation results of siphon velocity are in good agreement with the test results, and the relative error of theoretical calculation is within 5%; Different schemes of variable pipe diameter increase the siphon flow rate by 15% - 116%. It can be seen that variable pipe diameter can significantly enhance the drainage capacity of siphons, especially for high lift siphons.
ZHENG Jun
Landslide drainage and seepage prevention is a common technology for the treatment of landslide source area in Qinghai Tibet Plateau. The calculation of the existing siphon drainage velocity formula is improved, and the correctness of the modified velocity formula is verified by experiments. The test results show that: (1) the existing siphon calculation formula is only suitable for the calculation of low lift siphon drainage velocity, and the calculation error of high lift siphon drainage velocity is large, and the maximum relative error is more than 90%; (2) The modified siphon calculation formula is suitable for siphon drainage systems with various heads. The theoretical calculation results are in good agreement with the experimental results, and the relative general error of theoretical calculation is less than 20%; (3) Therefore, it is recommended to use the proposed modified formula for the calculation of siphon drainage velocity.
ZHENG Jun
Landslide drainage and seepage prevention is a common technology for the treatment of landslide source area in Qinghai Tibet Plateau. The calculation of the existing siphon drainage velocity formula is improved, and the correctness of the modified velocity formula is verified by experiments. The test results show that: (1) the existing siphon calculation formula is only suitable for the calculation of low lift siphon drainage velocity, and the calculation error of high lift siphon drainage velocity is large, and the maximum relative error is more than 90%; (2) The modified siphon calculation formula is suitable for siphon drainage systems with various heads. The theoretical calculation results are in good agreement with the experimental results, and the relative general error of theoretical calculation is less than 20%; (3) Therefore, it is recommended to use the proposed modified formula for the calculation of siphon drainage velocity.
ZHENG Jun
1) In recent years, with the global climate change, coupled with the internal dynamic disturbance and strong tectonic uplift, mountain disasters and floods in the Qinghai Tibet Plateau occur frequently, which poses a great threat to rural settlements in mountainous areas. Village disaster vulnerability and comprehensive risk prevention ability have gradually become an important topic of rural disaster prevention and reduction. 2) This data comes from a random questionnaire survey conducted from June to September 2021 in tuomai village, Lang Town, Lang County, Nyingchi City, Bangna village, Linzhi Town, Bayi District, xuewaka village, Gu township, Bomi County, Beibeng village, Beibeng Township, Motuo County, Xueni village, zhuwagen Town, Chayu County, Ranwu village, Ranwu Town, Basu County, Qamdo city and Zhuba village, Baima Town, Basu county, And the respondents are mainly adults familiar with family conditions. 3) Based on the principles of scientificity, applicability, feasibility, typicality and specificity, the questionnaire is designed for the individual villages around the Himalayas on the Qinghai Tibet Plateau. In order to ensure the reliability and validity of the design content of the questionnaire, a pre survey was conducted before the formal survey to further modify and improve the questionnaire. Before the formal start of the questionnaire survey, the investigators were explained the contents of the questionnaire and trained in survey skills. 4) A total of 231 questionnaires were completed, including 35 in tuomai village, 24 in Bangna village, 21 in xuewaka village, 38 in Beibeng village, 16 in Xueni village, 72 in Ranwu village and 25 in Zhuba village. The effective rate of the questionnaire was 98.6%.
ZHOU Qiang, CHEN Ruishan , LIU Fenggui, LI Wanzhi , LI Shengmei , CHEN Qiong, GAO Haixin
Landslide drainage and seepage prevention is a common technology for the treatment of landslide source area in Qinghai Tibet Plateau. The existing siphon drainage technology is inefficient when applied to high altitude areas. Through improvement, a variable pipe diameter and high head siphon drainage technology is proposed to solve the deep drainage problem of landslide in high altitude and low pressure areas. 12 groups of siphon drainage tests with variable pipe diameter were carried out to verify the correctness of the theoretical velocity calculation formula. The test results show that the theoretical calculation results of siphon velocity are in good agreement with the test results, and the relative error of theoretical calculation is within 5%; Different schemes of variable pipe diameter increase the siphon flow rate by 15% - 116%. It can be seen that variable pipe diameter can significantly enhance the drainage capacity of siphons, especially for high lift siphons.
ZHENG Jun
1) Data content: this data set is the landslide disaster data of Sanjiang Basin in the southeast of Qinghai Tibet Plateau; 2) Data source and processing method: this data set was independently interpreted by Dai Fuchu of Beijing University of technology using Google Earth; This data file is finally formed by remote sensing interpretation - on-site verification - re interpretation - re verification and other methods after 7 systematic interpretation. More than 5000 landslides have been verified on site with high accuracy; 4) This data has broad application prospects for hydropower resources development, traffic engineering construction and geological disaster evaluation in the three river basins in the southeast of Qinghai Tibet Plateau.
DAI Fuchu
This data uses a landslide hazard risk assessment model consisting of four modules: landslide hazard causative factors, landslide susceptibility model, exposed population and population casualty rate. The module of hazard-causing factors includes DEM, slope, rainfall, temperature, snow cover, GDP, and vegetation cover factors. The landslide hazard susceptibility model is a statistical analysis using a logistic regression model to obtain landslide susceptibility probability values. The population exposure module uses the landslide susceptibility values overlaid with population data. The population casualty rate module is based on the ratio of historical landslide casualties to the population exposed to landslides during the same period. Finally, by substituting the 2020 population data, the exposed population under different levels of landslide hazard susceptibility is calculated and multiplied with the historical period landslide hazard population casualty rate to assessIntegrated multi-hazard population risk in the peri-Himalayan and Asian water tower regions
WANG Ying
Content: Flow variation data of fine material dam break Data source: the test data are from the dam-breach model test of China Institute of Water Resources and Hydropower Research Collection location and method: China Institute of Water Resources and Hydropower Research. Collect and monitor various data through physical model test. Data quality description: the purpose of this test was to simulate the permeable piping dam break of the dam body, monitor the whole process of the break, and analyze the occurrence and development process of the break. The dam break mode of this test was the dam body permeable piping dam break. The initial piping position was located in the middle of the left side of the dam body. When piping occurs, the water storage height in the model reservoir was 4.6m and the water surface was 0.4m from the dam crest. The dam break process can be divided into seven stages.
XIE Dingsong
Data content: permeability and permeability stability test data of soil materials with different dry densities Data source: the test data orginated from each piezometer, osmometer, stopwatch and measuring cylinder. All instruments are submitted for inspection every year. Collection location and method: seepage Laboratory of Chinese Academy of Water Sciences. Test the dry density according to the gradation and sample preparation thickness. Collection time: August 1, 2020 to August 20, 2020 Data quality description: through the permeability and permeability stability test of piping soil material under different density and grading, the data content includes seepage flow, water head and time. The test data come from various pressure measuring tubes, osmometers, stopwatches and measuring cylinders, which were submitted for inspection every year.
XIE Dingsong
Data content: permeability and permeability stability test data of soil materials with different fine particle amounts Data source: through the seepage and seepage stability test of piping soil material under different density and grading, the data content includes seepage flow, water head and time. Collection location and method: seepage Laboratory of Chinese Academy of water sciences. Test the dry density according to the gradation and sample preparation thickness. Collection time: August 1, 2020 to August 20, 2020 Data quality description: the test data are from various pressure measuring tubes, osmometers, stopwatches and measuring cylinders, and all instruments are submitted for inspection every year.
XIE Dingsong
Data content: Damage calculation data of the Zhubalong Bridge Data source: calculation based on the established flood routing model. Collection method: comprehensive analysis through field investigation, literature retrieval and numerical model simulation. Data quality description: by constructing a two-dimensional dam break flood routing calculation model, the flood routing process after the dam break of Baige barrier lake on the "11.03" Jinsha River was simulated. Taking the Zhubalong Bridge in the lower reaches of the Jinsha River as the research object, the damage process of the bridge was explored based on the balance relationship between structural resistance and mountain flood damage force. The damage process of the Zhubalong Bridge in the process of flood routing was clarified, and the calculation formula for estimating the disaster water level of the bridge was obtained.
ZHANG Xinhua
Data content: Calculation data of bank slope scouring in the lower reaches of the Baige landslide based on flood routing model Data source: Taking the river range of 225 km downstream of Baige dam as the research object, the calculation was based on the constructed flood routing model. Collection method: visit and investigate the disaster situation on the left bank of Zhubalong section of Jinsha River. In order to compare and analyze with the actual investigation results, the 2km section from old bridge at Zhubalong in the Jinsha River to Zhubalong bridge along G318 national highway was intercepted to analyze its flood inundation and riverbed evolution process. Data quality description: Taking the 0-225km long river channel downstream of the Baige barrier lake dam site of Jinsha River as the research area, the routing process of dam break flood is simulated by using the subsection routing method. Through the measured hydrological data of hydrological stations in different river sections, the roughness coefficient of corresponding river sections is calibrated, and the flood routing process of each river section is obtained. On this basis, the 2km section from Zhubalong old bridge on Jinsha River to Zhubalong bridge on G318 national highway is intercepted, and its flood inundation and riverbed evolution process are analyzed. Taking the damaged highway and house scouring erosion from the confluence of Bachu River to Zhubalong section as an example, the analysis, calculation and verification are carried out.
ZHANG Xinhua
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn