This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Jingyangling station from January 1 to December 31, 2020. The site (101.116° E, 37.838° N) was located on a cold meadow surface in the Jingyangling, Qilian County, Qinghai Province. The elevation is 3750 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (5 m, north), wind speed and direction (10 m, north), air pressure (in the tamper box on the ground), rain gauge (10 m), four-component radiometer (6 m, south), two infrared temperature sensors (6 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (-0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the snow cover the solar panel causing insufficient power supply, data during March 14-April 25 were missing; due to the sensor malfunction, there were some NAN invalid values of the wind speed and direction; incorrect data of upward shortwave radiation occasionally; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2020-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei, REN Zhiguo, LI Xin
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from November 27 to December 31, 2020. The site (93.708° E, 40.348° N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.1m, Ts_0.2m, Ts_0.4m) (℃), soil moisture (Ms_0.1m, Ms_0.2m, Ms_0.4m) (%, volumetric water content), soil conductivity (Ec_0.1m, Ec_0.2m, Ec_0.4m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to April 12, 2020. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2020. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from August 16 to December 31, 2020. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, and Ta_8 m; RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_10 cm, Ts_20 cm) (℃), soil moisture (Ms_10 cm, Ms_20 cm) (%, volumetric water content), soil water potential (SWP_10cm , SWP_20cm)(kpa) , soil conductivity (Ec_10cm, Ec_20cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2020. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2020. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999.. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
ZHAO Huabiao
This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.
Luo Lun
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2019. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2018. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
The dataset of automatic meteorological observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Oct. 1, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the 15-20m high spruce and the surface was covered by 10cm deep moss. All the vegetation was in good condition. Observation items were the multilayer (2m and 10m) wind speed and direction, the air temperature and moisture, rain and snow gauges, snow depth, photosynthetically active radiation, four components of radiation from two layers (, 1.68m and 19.75 m), stem sap flow, the surface temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm),soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm) and soil heat flux (5cm & 15cm). As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the A'rou freeze/thaw observation station from Jul. 25, 2008 to Dec. 31, 2009, in Wawangtan pasture (E100°28′/N38°03′, 3032.8), Daban, A'rou. The experimental area, situated in the valley highland of south Babaohe river, an upper stream branch of Heihe river, with a flat and open terrain slightly sloping from southeast to southeast and hills and mountains stretching for 3km is ideal for a horizontal homogeneous underlying surface. Observation items included multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
HU Zeyong, MA Mingguo, Wang Weizhen, HUANG Guanghui, Zhang Zhihui, TAN Junlei
The dataset of automatic meteorological observations was obtained from Jun. 1, 2008 to Dec. 31, 2009 at the Huazhaizi desert station which is located in Anyangtan (E100°19'06.9″/N38°45'54.7″), south of Zhangye city, Gansu province,. The experimental area, situated in the middle stream of Heihe river, with a flat and open terrain and sparse vegetation cover is an ideal desert observing field. Observation items included the multi-layer (2m and 10m) wind speed and direction, the air temperature, precipitation, the four components of radiation, the surface infrared temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 160cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 160cm) and soil heat flux (5cm & 10cm). The raw data were level0 and the data after basic processes were level1; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate.. As for detailed information, please refer to “Meteorological and Hydrological Flux Data Guide".
LI Xin, XU Ziwei
The dataset of automatic meteorological observations was obtained at the Linze grassland station (E100 °04'/N39°15', 1394m) from Oct. 1, 2007 to Oct. 27, 2008. The landscape is dominated by wetland and saline land. Observation items were multilayer (2m, 4m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation, the surface temperature, the soil temperature (5cm, 10cm, 20cm and 40cm), and the multilayer soil temperature (2cm, 5cm and 10cm). The dataset was released at different levels: Level1 were transformed raw data and stored in .csv month by month; Level2 were processed data after correction and quality control. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
HU Zeyong, MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the Binggou cold region hydrometerological station (N38°04′/E100°13′), south of Qilian county, Qinghai province, from Sep. 25, 2007 to Dec. 31, 2009. The experimental area with paramo and riverbed gravel, situated in the upper stream valley of Heihe river, is ideal for the flat and open terrain and hills and mountains stretching outwards. The items were multilayer (2m and 10m) of the air temperature and air humidity, the wind speed, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), and soil heat flux (5cm and 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. The period from Sep. 25, 2007 to Mar. 12, 2008 was the pre-observing duration, during which hourly precipitation data (fragmented) and the soil temperature and soil moisture data were to be obtained. Stylized observations began from Mar. 12, 2008. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
WANG Jian, CHE Tao, MA Mingguo, Wang Weizhen, LI Hongyi, HAO Xiaohua, HUANG Guanghui, Zhang Zhihui, TAN Junlei
The dataset of automatic meteorological observations was obtained at the Dadongshu mountain snow observation station (E100°14′/N38°01′, 4101m) from Oct. 29, 2007 to Oct. 1, 2009. The experimental area with a flat and open terrain was slightly sloping from southeast to northwest. With alpine meadow and stones, and snow in autumn, winter and spring, the landscape was ideal. Observation items were multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, rain and snow gauges, snow depth, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
WANG Jian, CHE Tao, LI Hongyi, HAO Xiaohua
The dataset of automatic meteorological observations was obtained at the Yingke oasis station from Nov. 5, 2007 to Oct. 31, 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. Observation items were multilayer (2m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation; the surface infrared temperature; the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), the soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the Dayekou Maliantan grassland station (E100°18′/N38°33′, 2817m) from Nov. 2, 2007 to Dec. 31, 2009. The experimental area with a flat and open terrain was slightly sloping from southeast to northwest. The landscape was mainly grassland, with vegetation 0.2-0.5m high. Observation items were multilayer gradient (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
Interaction "heihe region in field observation experiment (HEIFE)", is in the heihe river basin in hexi corridor in the middle of a 70 km by 90 km range of experimental zone for the center with water and heat exchange of a very comprehensive experiment, the interaction is the current international field the longest continuous observation on the land surface process experiment, has obtained the Eurasia hinterland typical in heihe river basin, gobi desert and oasis in arid regions different underlaying surface, such as solar radiation, atmospheric boundary layer meteorological data and oasis of meteorological data, and collect the conventional meteorological and hydrological data in the region,It has laid the foundation of observation experiment for theoretical study of land surface processes in arid areas. The heihe experimental database (HDB) (tao zehong and zuo hongchao, 1994a) comprehensively collected and systematically integrated the field observation data of heihe experiment.In the database, all observation data are divided into three categories according to the nature and purpose of observation: Category 1: normal observation period (FOP) data.It includes :(1) observation data of 5 micrometeorological stations and 5 automatic meteorological stations;(2) groundwater level data observed at four well stations;(3) distribution of blowing sand and dust and ozone observation data;(4) conventional observation data of 3 upper-air weather stations, 3 surface weather stations, 4 hydrology stations, some rain measuring stations and downhole water stations. The second category: enhanced observation period (IOP) data.It includes: observations of turbulence, tethered balloons, Sodar, Lidar, soil moisture content and composition during each strengthening period (PlOP, IOP-1, lop-2, IOP-3, IOP-4). The third category is special observation period data, which includes: biological meteorological observation (BOP), precipitation mechanism observation (iop-r) in arid areas, turbulence contrast observation (iop-c), supplementary observation data of deserts far from the oasis (iop-da) and observation data of sand sample experiment.Please refer to HEIFE database user manual for more detailed information (tao zehong et al., 1994b).
LI Xin, RAN Youhua
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn