This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
The dataset is the remote sensing image data ofGF-1 satellite in the Qinghai-Tibet engineering corridor obtained by China High Resolution Earth Observation Center. After the fusion processing of multispectral and panchromatic bands, the image data with a spatial resolution of 2 m is obtained. In the process of obtaining ground vegetation information, the classification technology of combining object-oriented computer automatic interpretation and manual interpretation is adopted, The object-oriented classification technology is to collect adjacent pixels as objects to identify the spectral elements of interest, make full use of high-resolution panchromatic and multispectral data space, texture and spectral information to segment and classify, and output high-precision classification results or vectors. In actual operation, the image is automatically extracted by eCognition software. The main processes are image segmentation, information extraction and accuracy evaluation. After verification with the field survey, the overall extraction accuracy is more than 90%.
NIU Fujun
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.
PAN Xiaoduo, LI Hu
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
ZHOU Defu, ZOU Defu, ZOU Defu, Zhao Lin, ZHAO Lin, Liu Guangyue, LIU Guangyue, Du Erji, DU Erji, LI Zhibin , LI Zhibin, Wu Tonghua, WU Xiaodong, CHEN Jie CHEN Jie
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020https://doi.org/10.5194/tc-14-3907-2020 . This data can also be used for the comparative analysis of soil microorganisms across the three poles.
KONG Weidong
The Qinghai-Tibetan Plateau (QTP), the largest high-altitude and low-latitude permafrost zone in the world, has experienced rapid permafrost degradation in recent decades, and one of the most remarkable resulting characteristics is the formation of thermokarst lakes. Such lakes have attracted significant attention because of their ability to regulate carbon cycle, water, and energy fluxes. However, the distribution of thermokarst lakes in this area remains largely unknown, hindering our understanding of the response of permafrost and its carbon feedback to climate change.Based on more than 200 sentinel-2A images and combined with ArcGIS, NDWI and Google Earth Engine platform, this data set extracted the boundary of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau through GEE automatic extraction and manual visual interpretation.In 2018, there were 121,758 thermokarst lakes in the permafrost area of the Qinghai-Tibet Plateau, covering an area of 0.0004-0.5km², with a total area of 1,730.34km² respectively.The cataloging data set of Thermokarst Lakes provides basic data for water resources evaluation, permafrost degradation evaluation and thermal karst study on the Qinghai-Tibet Plateau.
CHEN Xu, MU Cuicui, JIA Lin, LI Zhilong, FAN Chengyan, MU Mei, PENG Xiaoqing, WU Xiaodong
This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K
BOB Su, WEN Jun
The data includes the runoff components of the main stream and four tributaries in the source area of the Yellow River. In 2014-2016, spring, summer and winter, based on the measurement of radon and tritium isotopic contents of river water samples from several permafrost regions in the source area of the Yellow River, and according to the mass conservation model and isotope balance model of river water flow, the runoff component analysis of river flow was carried out, and the proportion of groundwater supply and underground ice melt water in river runoff was preliminarily divided. The quality of the data calculated by the model is good, and the relative error is less than 20%. The data can provide help for the parameter calibration of future hydrological model and the simulation of hydrological runoff process.
WAN Chengwei
The data set of hydrogeological elements in the typical frozen soil area of Qilian Mountain mainly includes groundwater type, water richness (single water inflow or single spring flow), main rivers and tributaries, spring water (falling springs, spring groups, large springs, Mineral spring distribution), borehole (pressure water borehole, submerged borehole, gravity flow borehole distribution), fault zone (compressive fracture, tensile fracture), angle unconformity boundary, parallel unconformity boundary, west branch of upper Heihe River The boundary of the watershed, the seasonal frozen soil area and the permafrost distinguish the boundary, the distribution of modern glaciers and swamps. This data set of hydrogeological elements can provide background information for the hydrological ecological process and hydrogeological environment in cold regions. This data comes from the vectorization of four 1: 200,000 hydrogeological maps (Qilian, Yenigou, Qilian, and Sunan) and reintegrates the groundwater types. With higher resolution, the data can provide background information for the research on the evolution of water and soil resources and environmental changes in the source area of the Pan-Third Pole River.
SUN Ziyong
The ground temperature, moisture and ice content at various depth (0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) was generated through the SHAW model, which was evaluated by observations at AWS stations and WSN in the study area and could be used in research relevant on soil freezing and thawing.
ZHANG Yanlin
Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".
LI Xin
In April 2014 and may 2016, 21 Lakes (7 non thermal lakes and 14 thermal lakes) were collected in the source area of the Yellow River (along the Yellow River) respectively. The abundance of hydrogen and oxygen allogens was measured by Delta V advantage dual inlet / hdevice system in inno tech Alberta laboratory in Victoria, Canada. The isotope abundance was expressed in the form of δ (‰) (relative to the average seawater abundance in Vienna) )Test error: δ 18O: 0.1 ‰, δ D: 1 ‰. The data also includes Lake area and lake basin area extracted from Landsat 2017 image data in Google Earth engine.
WAN Chengwei
The spatial-temporal distribution map of topographic shadows in the upper reaches of Heihe River (2018), which is calculated based on the SRTM DEM and the solar position (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The spatial resolution is 100 m and the time resolution is 15 min. The datased can be used in the fields of ecological hydrology and remote sensing research. Using the observed solar radiation at several automatic weather stations in the upper reaches of Heihe River, the accuracy of the calculation results is verified. Results show that the dataset can accurately capture the temporal and spatial changes of the topographic shadow at the stations, and the time error is within 20 minutes.
ZHANG Yanlin
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
WANG Lei
Sentine-1 SAR data were used to monitor the permafrost of Biuniugou in Heihe River Basin of Qinghai-Tibet Plateau. Based on the Sentine-1 SAR image of Bison Valley from 2014 to 2018, the active layer thickness in the study area was estimated by using the small baseline set time series InSAR (DSs-SBAS) frozen soil deformation monitoring method based on distributed radar target, combined with SAR backscattering coefficient, MODIS surface temperature and Stefan model. The results show that the thickness of active layer is between 0.8 m and 6.6 m, with an average of about 3.3 M. It is of great significance to carry out large-scale and high-resolution monitoring.
JIANG Liming
Global warming and human activities have led to the degradation of permafrost and the collapse of permafrost, which have seriously affected the construction of permafrost projects and the ecological environment. Based on high-resolution satellite images, the permafrost of oboling in Heihe River Basin of Qinghai Tibet Plateau is taken as the research area, and the object-oriented classification technology of machine learning is used to extract the thermal collapse information in the research area. The results show that from 2009 to 2019, the number of thermal collapse increased from 12 to 16, and the total area increased from 14718.9 square meters to 28579.5 square meters, nearly twice. The combination of high spatial resolution remote sensing and object-oriented classification method has a broad application prospect in the monitoring of thermal thawing and collapse of frozen soil.
JIANG Liming
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn