This data set records the simulation area of vegetation restoration and reconstruction technology of sandy land (Ningxia / Zhongwei / Shapotou) meteorological elements and three parameter data of soil at different depths from January 2021 to December 2021, and in order to explore the feasibility of high salinity salt water in the Aral Sea for vegetation construction, the project members carried out salt water irrigation and planting Suaeda salsa in saline alkali lands such as No. 2 company, regiment 31, second agricultural division, ganquanpu, Karamay, Luntai and tumushuk in the lower reaches of Tarim River, Xinjiang from 2020 to 2021 To study the phenotypic characteristics of different plants under high salinity saline water irrigation. The collected data include soil physical and chemical properties such as soil water content, electrical conductivity and soil salt, as well as physiological data of salt tolerant plants.
LI Xinrong, HE Mingzhu, ZHAO Zhenyong
The Slope Length and Stepness Factor (LS) dataset of Pan-third pole 20 country is calculated based on the free accessed 1 arc second resolution SRTM digital elevation data (Shuttle Radar Topography Mission, SRTM; the website is http://srtm.csi.cgiar.org). After the pre-processing such as pseudo edge removal, filtering and noise removal, the LS factor with 7.5 arc second resolution was calculated with the LS factor algorithm in CSLE model and the LS calculation tool (LS_tool) developed in this project. The LS factor data of Pan-third pole 20 countries is the fundamental data for soil erosion rate calculation based on CSLE, and it also the fuandatmental data for analyzing the erosion topographic characteristics of Pan third pole 20 countries (such as macro distribution and micro pattern of elevation, slope and slope) . The dataset if of great importance for the analysis of geomorphic characteristics and geological disaster characteristics in this area.
YANG Qinke
1)The dataset includes the grid data of vegetation coverage and biological measure factor B of 20 countries in key regions, with a spatial resolution of 300 meters. 2)The basic data source is the MODIS MOD13Q1 product from 2014 to 2016 with a spatial resolution of 250 m. Based on this, a 24-half month average vegetation coverage raster data during a 3 year period was calculated, and then the soil loss ratio was calculated according to the land type. The, the 24- half months rainfall erosivity was further weighted and averaged to obtain a grid map of vegetation coverage and biological measures B factor. 3)MOD13Q1 remote sensing vegetation data was processed by cloud removal. The calculated B factor was statistically analyzed by landuse types and rationality analyzed. The final data quality is good. 4)The factor B of vegetation coverage and biological measures reflects the impact of surface land use/vegetation coverage on soil erosion, and is of great significance for soil erosion simulation and spatial pattern analysis in 20 key regions.
ZHANG Wenbo
This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020https://doi.org/10.5194/tc-14-3907-2020 . This data can also be used for the comparative analysis of soil microorganisms across the three poles.
KONG Weidong
This dataset records The experiment of soil water content in the lower reaches of the Tarim River (Karl) was carried out by the members of the Xinjiang salt water Regiment (Karl) from September to September, 2020 In order to study the phenotypic characteristics of different plants under high salinity saline water irrigation, and to explore the feasibility of high salinity saline water for vegetation construction.
LI Xinrong, HE Mingzhu, ZHAO Zhenyong
This dataset includes the concentrations and spatial pattern of mercury (Hg) in the soil of the southern Tibetan Plateau. Two hundred thirty nine soil samples were collected, and cold vapor atomic fluorescence spectrophotometry (CVAFS) was used to analyse the Hg contents. The limit of detection (LOD) for this method is 1.8 ng/g. The standard reference material, soil GB GSS-2, which is supplied by National Institute of Metrology P.R.China, was also analyzed for assessing the accuracy of this method, and the recoveries of this method were 84%-103%. This dataset will provide the informations of soil Hg contamination and background values over the southern Tibetan Plateau.
WANG Xiaoping
This data set contains the results of the calculation of Net Primary Productivity (NPP) on the Tibetan Plateau based on ecological models and remote sensing data from 1982 to 2006. Ecosystem NPP of the Tibetan Plateau was generated based on the remote sensing Advanced Very High Resolution Radiometer (AVHRR) data and the Carnegie-Ames-Stanford Approach (CASA) model(1982-2006), the soil carbon content was generated based on the second soil census data, and the biomass carbon data were generated based on the High Resolution Biosphere Model (HRBM) model. Forest ecosystem NPP of the Tibetan Plateau (1982-2006): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 Grassland ecosystem NPP of the Tibetan Plateau(1982-2006): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00,npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00. Biomass carbon and soil carbon of the Tibetan Plateau: Biomass.e00,Socd.e00. The soil carbon content data (Socd) are generated based on data of the second soil census of China and Soil Map of China (1:1,000,000) by soil subclass interpolation. The NPP data are generated from the CASA model and AVHRR data simulation: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. The biomass carbon data are generated via HRBM model simulation: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. The raw data are mainly remote sensing data and field observation data with high accuracy; the verification and adjustment of the measured data in the field during the production were undertaken to maintain the error of the simulation results and the field measured data within the acceptable range as much as possible; the verification results of the NPP data and the field measured data show that the error remains within 15%. The spatial resolution is 0.05°×0.05° (longitude×latitude).
ZHOU Caiping
The data set of bacterial diversity in Tibetan soil provides the microbial distribution characteristics of the soil surface (0-2 cm) of the Tibetan Plateau. The samples were collected from July 1st to July 15th, 2015, from three types of ecosystems: meadows, grasslands and desert. The soil samples were stored in ice packs and transported to the Ecological Laboratory of the Institute of Tibetan Plateau Research in Beijing. The DNA from the soil was extracted using an MO BIO Power Soil DNA kit. The soil surface samples were stored in liquid nitrogen after collection, shipped to the Sydney laboratory, and then extracted using a Fast Prep DNA kit. The extracted DNA samples adopted 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3') to amplify the 16S rRNA gene fragments. The amplified fragments were sequenced by the Illumina Miseq PE250 method, and the raw data were analyzed using Mothur software. The sequences with poor sequencing quality were first removed; the sequences were sorted, and the chimeric sequences were removed. The similarities between the sequences were then calculated, the sequences with similarities above 97% were clustered into one OTU, and the OTU representative sequence was defined. The OTU representative sequence was compared with the Silva database and identified as level one when the reliability exceeded 80%. The microbial diversities in these data on the Tibetan Plateau were systematically compared, which made them significant to the study of the microbial distribution on the Tibetan Plateau.
JI Mukan
According to the characteristics of the selected field and its surrounding area, a trime tube is arranged in the corn field, and 5 trime tubes are arranged in a direction perpendicular to the field path. When monitoring soil moisture content in the TDR vertical direction, the unit is every 10cm. Monitor down. Location: N 38 ° 52′27.6 ″ E 100 ° 21′14.0 ″ The submitted data includes the water content of the farmland and its surrounding soil (TDR monitoring) after three irrigations in a selected farmland in Yingke Irrigation District, encrypted monitoring after irrigation, one group every 3 hours within 24 hours, and 3 groups per day for the next 5 days. -10 days are two groups per day, and 10-15 days are one group per day.
HUANG Guanhua, JIANG Yao
The research project on the function and mechanism of sand-fixing afforestation of waste lignin from straw pulp and paper making belongs to the national natural science foundation of China "environment and ecological science in western China" major research program, led by wang hanjie, a researcher of the institute of aviation meteorology and chemical protection, air force equipment research institute. The project ran from January 2004 to December 2006 Remittance data of the project: 1. 2005-08-10 - sand lake - jinsha wan test site image (JPG) 2.2006 field picture of fixed sand test (JPG) 3. Meteorological data of ningxia jinshawan meteorological station (TXT text) Observation data including dry bulb temperature, wet bulb temperature, 0, 5, 10, 15, 20cm ground temperature, evaporation and air temperature were observed at 8:00,14:00 and 20:00 on August 13, 2005 4. Growth data of jinshawan community in ningxia (TXT text) The data of crown diameter and height of four samples are included. 5. Soil water data of jinshawan, ningxia (excel) Soil moisture data of 16 samples at depths of 20CM and 12CM in clear water control area and lignin spraying area by 2 hours in the daytime on August 19, 2005. 6. Soil water data of shahu lake in ningxia (excel) On August 10,11, 2005, soil moisture data of various depths of 10CM,12CM and 20CM were obtained 7. Plant growth data of sand fixation community in shahu, ningxia (excel) Plant growth statistics of 5 sample plots: species name,x,y, base, crown, height, number of plants.
WANG Hanjie
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn