The meteorological data are the basic meteorological data such as air temperature, relative humidity, wind speed, precipitation and air pressure observed in the observation field of Southeast Tibet station of Chinese Academy of Sciences (94.738286 ° e, 29.76562 ° n, 3326m), and the underlying surface is forest grassland. The time resolution of the original data is 10min, the air temperature, relative humidity, wind speed and air pressure are calculated by arithmetic mean, and the precipitation is the daily cumulative value. The meteorological station was set up at the end of 2006 and the probes were replaced in August 2020. Please note that the models of instrument probes before and after the update are as follows: the model of temperature and humidity probe was changed from HMP45C to hmp155; The model of air pressure probe is changed from PTB220 to ptb110; The model of wind speed sensor is changed from 034b to 0513, and the model of rain gauge sensor is rg13h The data can be used by students and researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from South East Tibetan Plateau station for integrated observation and research of alpine environment, CAS)
Luo Lun
The observation data are from Tajikistan Pamir Plateau glacier observation station built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2019, including air temperature and humidity, atmospheric pressure, wind speed and direction, precipitation, snow depth and other data. The data period is from November 1, 2019 to November 30, 2020. The *. Xlsx format processed by MS office has good data quality. This data can provide a reference for the study of glacier ablation and its potential impact on hydrological characteristics, water resources and ecological environment. Meteorological observation elements are accumulated and processed into climate data to provide precious data support for weather forecast and economic activities. It is widely used in agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
The observation data are from the Khunjerab gradient meteorological observation and test station on Pamir Plateau built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2017, including the gradient data of various meteorological elements. The data period is from November 18, 2019 to October 8, 2021. The *. Xlsx format obtained by using toa5 merging tool and MS office has good data quality. This data can provide support for the research on the law of surface radiation and energy budget in Pamir Plateau and China Pakistan Economic Corridor, and provide reference basis for land surface process. Khunjerab meteorological station is located in the Pamir Plateau of China, with an altitude of 4600m, close to the border between China and Pakistan, and the data is extremely precious.
HUO Wen
The observation data come from the Zhongtianshan Grassland Land-Air Interaction Observation Experiment Station (Zhongtianshan Grassland Ecosystem Monitoring Station, Zhongtianshan Forest Ecosystem Monitoring Station and Zhongtianshan Peak Grassland Station, respectively) built by the Urumqi Desert Meteorological Institute of the China Meteorological Administration in 2016, which has a radiation observation system, a gradient detection system and eddy-related systems, containing data on radiation, soil and meteorological elements. The data period is from September 1, 2019 to October 13, 2021, and the data are in *.xlsx format using Eddrpro, LoggerNet, TOA5 merging tool and MS Office, etc. The data are of good quality and can provide support for the study of surface radiation and energy balance in the subsurface of grassland and forest, and provide reference for land surface processes. The data can be used to support the study of surface radiation and energy balance of grassland and forest, and provide a reference basis for land surface processes.
HUO Wen
Kara batkak glacier meteorological station in West Tianshan, Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observation data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), wind direction at maximum wind speed (°), maximum wind speed (M / s), maximum wind speed time, wind direction at maximum wind speed (°), and maximum wind speed (M / s) , maximum wind speed time, maximum instantaneous wind speed and wind direction in minutes (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), maximum air pressure occurrence time, minimum air pressure (HPA), minimum air pressure occurrence time). Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.
YANG Wei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Jingyangling station from January 1 to December 31, 2020. The site (101.116° E, 37.838° N) was located on a cold meadow surface in the Jingyangling, Qilian County, Qinghai Province. The elevation is 3750 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (5 m, north), wind speed and direction (10 m, north), air pressure (in the tamper box on the ground), rain gauge (10 m), four-component radiometer (6 m, south), two infrared temperature sensors (6 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (-0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the snow cover the solar panel causing insufficient power supply, data during March 14-April 25 were missing; due to the sensor malfunction, there were some NAN invalid values of the wind speed and direction; incorrect data of upward shortwave radiation occasionally; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2020-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei, REN Zhiguo, LI Xin
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from November 27 to December 31, 2020. The site (93.708° E, 40.348° N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.1m, Ts_0.2m, Ts_0.4m) (℃), soil moisture (Ms_0.1m, Ms_0.2m, Ms_0.4m) (%, volumetric water content), soil conductivity (Ec_0.1m, Ec_0.2m, Ec_0.4m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to April 12, 2020. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2020. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from August 16 to December 31, 2020. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, and Ta_8 m; RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_10 cm, Ts_20 cm) (℃), soil moisture (Ms_10 cm, Ms_20 cm) (%, volumetric water content), soil water potential (SWP_10cm , SWP_20cm)(kpa) , soil conductivity (Ec_10cm, Ec_20cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2020. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2020. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day and missing records were denoted by -6999.. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column.
ZHAO Changming, ZHANG Renyi
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
ZHAO Huabiao
Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.
Luo Lun
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2019. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2018. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2019. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2017. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2017-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Yang et al. (2015) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
1) Data content (including elements and significance): the data includes daily values of temperature (℃), precipitation (mm), relative humidity (%) and wind speed (M / s) 2) Data source and processing method; air temperature, relative humidity and wind speed are daily mean values, precipitation is daily cumulative value; data collection location is 29 ° 39 ′ 25.2 ″ n; 94 ° 42 ′ 25.62 ″ E; 4390m; underlying surface is natural grassland; collector model Campbell Co CR1000, collection time: 10 minutes. Digital automatic data acquisition. The temperature and relative humidity instrument probe is hmp155a; the wind speed sensor is 05103; the precipitation is te525mm; 3) Data quality description; the original data of temperature, relative humidity and wind speed are the average value of 10 minutes, and the precipitation is the cumulative value of 10 minutes; the daily average temperature, relative humidity, precipitation and wind speed are obtained by arithmetic average or summation. Due to the limitation of sensors, there may be some errors in winter precipitation. 4) In addition, it is convenient for scientists to update the atmospheric data in the future. This data is updated from time to time every year.
Luo Lun
The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.
Luo Lun
1) Data content (including elements and significance): 19 stations (South-East Tibetan station, Namucuo station, Qomolangma station, Medog station, Ngari station, Naqu station(ITPCAS), Golmud station, Tianshan station, Qilianshan station, Ruoergai station(NIEER) , Yulong Xueshan station, Naqu station(NIEER), Haibei Station, Sanjiangyuan station, Shenzha station, Ruoergai station (CIB), Naqu station(IG SNRR), Lhasa station,Qinghai lake station) Meteorological observation data sets (temperature, precipitation, wind direction and wind speed, relative humidity, atmospheric pressure, radiation and evaporation) of the Qinghai Tibet Plateau in 2019 2) Data source and processing method: field observation excel format of 19 stations in Alpine network 3) Data quality description: Daily resolution of stations 4) Achievements and prospects of data application: Based on the long-term observation data of the field stations in the alpine network and the overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; through the intensive observation and sample plot verification in key areas, the meteorological elements, lake water and water quality, aboveground vegetation biomass, glacier and frozen soil changes are completed According to the inversion of products; based on the technology of Internet of things, the meteorological, hydrological and ecological data management platform with multi station networking is developed to realize real-time acquisition, remote control and sharing of online data.
ZHU Liping,
The observation data set of Central Asia field meteorological station includes the field observation data of temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation, soil heat flux, sunshine time and soil temperature of 10 Central Asia field meteorological stations. 10 field stations cover farmland, forest, grassland, desert, desert, wetland, plateau, mountain and other ecosystem types. The original meteorological data collected by the ground meteorological observation station is obtained after screening and review, and format conversion. Data quality is good. Central Asia has a variety of climate types, fragile ecological environment and frequent meteorological disasters. The establishment of this data set provides data support for long-term research in the fields of Central Asia ecological environment monitoring, disaster prevention and mitigation, climate change and ecological environment in Central Asia, and has been applied in the research of Central Asia ecological environment monitoring.
LI Yaoming LI Yaoming
The dataset records the Ali Desert Environment Integrated Observation and Research Station, the meteorological dataset for 2017-2018, and the time resolution of the data is days. It includes the following basic meteorological parameters: temperature (1.5 meters from the ground, once every half hour, unit: Celsius), relative humidity (1.5 meters from the ground, half an hour, unit: %), wind speed (1.5 meters from the ground, half an hour) , unit: m / s), wind direction (1.5 meters from the ground, once every half hour, unit: degrees), air pressure (1.5 meters from the ground, once every half hour, unit: hPa), precipitation (24 hours, unit: mm ), water vapor pressure (unit: Kpa), evaporation (unit: mm), downward short-wave radiation (unit: W/m2), upward short-wave radiation (unit: W/m2), downward long-wave radiation (unit: W/m2) ), upward long-wave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). Data collection location: Observation Field of Ali Desert Environment Comprehensive Observation and Research Station, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Longitude: 79°42'5"; Latitude: 33°23'30"; Altitude: 4264 meters.
ZHAO Huabiao
The dataset of automatic meteorological observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Oct. 1, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the 15-20m high spruce and the surface was covered by 10cm deep moss. All the vegetation was in good condition. Observation items were the multilayer (2m and 10m) wind speed and direction, the air temperature and moisture, rain and snow gauges, snow depth, photosynthetically active radiation, four components of radiation from two layers (, 1.68m and 19.75 m), stem sap flow, the surface temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm),soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm) and soil heat flux (5cm & 15cm). As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the A'rou freeze/thaw observation station from Jul. 25, 2008 to Dec. 31, 2009, in Wawangtan pasture (E100°28′/N38°03′, 3032.8), Daban, A'rou. The experimental area, situated in the valley highland of south Babaohe river, an upper stream branch of Heihe river, with a flat and open terrain slightly sloping from southeast to southeast and hills and mountains stretching for 3km is ideal for a horizontal homogeneous underlying surface. Observation items included multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
HU Zeyong, MA Mingguo, Wang Weizhen, HUANG Guanghui, Zhang Zhihui, TAN Junlei
The dataset of automatic meteorological observations was obtained from Jun. 1, 2008 to Dec. 31, 2009 at the Huazhaizi desert station which is located in Anyangtan (E100°19'06.9″/N38°45'54.7″), south of Zhangye city, Gansu province,. The experimental area, situated in the middle stream of Heihe river, with a flat and open terrain and sparse vegetation cover is an ideal desert observing field. Observation items included the multi-layer (2m and 10m) wind speed and direction, the air temperature, precipitation, the four components of radiation, the surface infrared temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 160cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 160cm) and soil heat flux (5cm & 10cm). The raw data were level0 and the data after basic processes were level1; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate.. As for detailed information, please refer to “Meteorological and Hydrological Flux Data Guide".
LI Xin, XU Ziwei
The dataset of automatic meteorological observations was obtained at the Linze grassland station (E100 °04'/N39°15', 1394m) from Oct. 1, 2007 to Oct. 27, 2008. The landscape is dominated by wetland and saline land. Observation items were multilayer (2m, 4m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation, the surface temperature, the soil temperature (5cm, 10cm, 20cm and 40cm), and the multilayer soil temperature (2cm, 5cm and 10cm). The dataset was released at different levels: Level1 were transformed raw data and stored in .csv month by month; Level2 were processed data after correction and quality control. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
HU Zeyong, MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the Binggou cold region hydrometerological station (N38°04′/E100°13′), south of Qilian county, Qinghai province, from Sep. 25, 2007 to Dec. 31, 2009. The experimental area with paramo and riverbed gravel, situated in the upper stream valley of Heihe river, is ideal for the flat and open terrain and hills and mountains stretching outwards. The items were multilayer (2m and 10m) of the air temperature and air humidity, the wind speed, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm), and soil heat flux (5cm and 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. The period from Sep. 25, 2007 to Mar. 12, 2008 was the pre-observing duration, during which hourly precipitation data (fragmented) and the soil temperature and soil moisture data were to be obtained. Stylized observations began from Mar. 12, 2008. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
WANG Jian, CHE Tao, MA Mingguo, Wang Weizhen, LI Hongyi, HAO Xiaohua, HUANG Guanghui, Zhang Zhihui, TAN Junlei
The dataset of automatic meteorological observations was obtained at the Dadongshu mountain snow observation station (E100°14′/N38°01′, 4101m) from Oct. 29, 2007 to Oct. 1, 2009. The experimental area with a flat and open terrain was slightly sloping from southeast to northwest. With alpine meadow and stones, and snow in autumn, winter and spring, the landscape was ideal. Observation items were multilayer (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, rain and snow gauges, snow depth, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
WANG Jian, CHE Tao, LI Hongyi, HAO Xiaohua
The dataset of automatic meteorological observations was obtained at the Yingke oasis station from Nov. 5, 2007 to Oct. 31, 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. Observation items were multilayer (2m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation; the surface infrared temperature; the multilayer soil temperature (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), the soil moisture (10cm, 20cm, 40cm, 80cm, 120cm and 160cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
The dataset of automatic meteorological observations was obtained at the Dayekou Maliantan grassland station (E100°18′/N38°33′, 2817m) from Nov. 2, 2007 to Dec. 31, 2009. The experimental area with a flat and open terrain was slightly sloping from southeast to northwest. The landscape was mainly grassland, with vegetation 0.2-0.5m high. Observation items were multilayer gradient (2m and 10m) of the wind speed, the air temperature and air humidity, the air pressure, precipitation, four components of radiation, the multilayer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), soil moisture (5cm, 10cm, 20cm, 40cm, 80cm, and 120cm), and soil heat flux (5cm & 15cm). The raw data were level0 and the data after basic processes were level1, in which ambiguous ones were marked; the data after strict quality control were defined as Level2. The data files were named as follows: station+datalevel+AMS+datadate. Level2 or above were strongly recommended to domestic users. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
Meteorological elements are indicators of atmospheric variables or phenomena indicating weather conditions at a given place and at a given time. We used automatic forest weather station to monitor the meteorological elements data of Pailugou Watershed at 2800m above sea level. The main meteorological elements monitored include total radiation, net radiation, temperature, relative humidity, wind speed, and wind direction, which basically reflect the changes in meteorological elements in the Qinghai spruce forest.
CHANG Xuexiang
The micro-meteorological field is located in the grassland of Pailugou watershed of Qilian Mountain with an altitude of 2700m. The data were recorded from January 2011 to July 2012, and the time interval was half an hour, including 1.5m humidity, 3m temperature, 2.8m air pressure, 1.3m rainfall, 2.2m wind speed, 3.1m total radiation, the units are %, °C, Pa, m, m/s, W•M-2.
HE Zhibin
Interaction "heihe region in field observation experiment (HEIFE)", is in the heihe river basin in hexi corridor in the middle of a 70 km by 90 km range of experimental zone for the center with water and heat exchange of a very comprehensive experiment, the interaction is the current international field the longest continuous observation on the land surface process experiment, has obtained the Eurasia hinterland typical in heihe river basin, gobi desert and oasis in arid regions different underlaying surface, such as solar radiation, atmospheric boundary layer meteorological data and oasis of meteorological data, and collect the conventional meteorological and hydrological data in the region,It has laid the foundation of observation experiment for theoretical study of land surface processes in arid areas. The heihe experimental database (HDB) (tao zehong and zuo hongchao, 1994a) comprehensively collected and systematically integrated the field observation data of heihe experiment.In the database, all observation data are divided into three categories according to the nature and purpose of observation: Category 1: normal observation period (FOP) data.It includes :(1) observation data of 5 micrometeorological stations and 5 automatic meteorological stations;(2) groundwater level data observed at four well stations;(3) distribution of blowing sand and dust and ozone observation data;(4) conventional observation data of 3 upper-air weather stations, 3 surface weather stations, 4 hydrology stations, some rain measuring stations and downhole water stations. The second category: enhanced observation period (IOP) data.It includes: observations of turbulence, tethered balloons, Sodar, Lidar, soil moisture content and composition during each strengthening period (PlOP, IOP-1, lop-2, IOP-3, IOP-4). The third category is special observation period data, which includes: biological meteorological observation (BOP), precipitation mechanism observation (iop-r) in arid areas, turbulence contrast observation (iop-c), supplementary observation data of deserts far from the oasis (iop-da) and observation data of sand sample experiment.Please refer to HEIFE database user manual for more detailed information (tao zehong et al., 1994b).
LI Xin, RAN Youhua
The Shiyang River Basin Information System thematic data set is one of the results of the technical assistance project “Optimization of Desertification Control in Gansu Province” assisted by the Asian Development Bank, including 5 folders including document, investigation_point, maps, photo, and spatial. Each file The folder contains several files. The document folder includes the target design, data processing, thematic summary report, and projection information.The gpspoint folder includes files recorded in shapefile point format sampled by gps according to different purposes.The maps folder contains Chinese, english, and fonts files. Folder, the first two folders represent 14 Chinese and English maps stored in A4 format and pdf format, and fonts contain some special fonts: the photo folder contains field survey digital photos stored in bmp format: spatial The folder contains the dem folder of the digital elevation model, the gansu folder of the outline map of Gansu Province and the Hexi Corridor, the generate folder of the site data file shapefile, the grid folder of the raster data of various geographic features, and the remote sensing image. image folder, meteoHydro folder for original site text data, and vector folder for vector data for various geographic features. The data includes: 1. DEM folder: 100m dem, hillshade, divided into GRID and geotif formats 2. Gansu folder: Gansu border, Hexi border 3. Grid folder: NDVI (vegetation index), lndchange (land transfer matrix), landscape86 (land landscape map in 86 years), landscape2k (land landscape map in 2000), Desertiftype (desert type landscape map), Desersevrt (desert type map ), Annprecip 4. Meteohydro folder: Minqin, Wuwei, Yongchang meteorological data (1) daily daily observation items: Airpress (humidity), Precipitation (radiation), Sunlight (sunlight), Temperature (temperature) ), Wind (wind speed) (2) Months (monthly): Airpress (air pressure), Humidity (humidity), Rain (precipitation), Sunlight (sunlight), Temperature (temperature), Wind (wind speed) (3) tendays: Airpress, Humidity, Rain, Sunlight, Temperature, Wind (4) years (year by year): Precipitation, Temperature 5. Vectro folder: (1) Admwhole (county boundary map), (2) Lake (lake), (3) Hydrasta (hydrological site), (4) Basin (watershed boundary), (5) Landscape2000 (land use 200 (Year), (6) landscape86 (land use 1986), (7) Meteosta (meteorological station), (8) Lakep (reservoir point), (9) Place (residential point), (10) Rainfallcontour (railway), ( 11) Rainfallcontour (rainfall contour map), (12) Road (highway), (13) Stream (water system map), (14) Town (county name), (15) Township (county township boundary), (16) Vegetation (vegetation map) Data projection information: PROJCS ["Albers", GEOGCS ["GCS_Krasovsky_1940", DATUM ["Not_specified_based_on_Krassowsky_1940_ellipsoid", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]] For detailed data description, please refer to the data file
LI Xin
Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".
LI Xin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn