This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2021. The site (101.853E, 37.561N) was located in Wuwei, Gansu Province. The elevation is 3614m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.05, -0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_2_1, Ta_1_4_1, and Ta_1_8_1; RH_1_2_1, RH_1_4_1and RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_2_1, WS_1_4_1 and WS_1_8_1) (m/s), wind direction (WD_1_2_1, WD_1_4_1 and WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s/m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_20_1 and TS_1_40_1) (℃), soil moisture (SWC_1_5_1, SWC_1_20_1 and SWC_1_40_1) (%, volumetric water content), soil water potential (SWP_1_5_1, SWP_1_20_1 and SWP_1_40_1)(kpa) , soil conductivity (EC_1_5_1, EC_1_20_1 and EC_1_40_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. The air pressure data were rejected because of program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from January 1 to December 31, 2021. The site (94.125° E, 38.992° N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 2823 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8m, towards north), wind speed and direction profile (windsonic; 4m and 8m, towards north), air pressure (1m), rain gauge (4m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.1, -0.2 and -0.4m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_10_1, TS_1_20_1, TS_1_40_1) (℃), soil moisture (SWC_1_10_1, SWC_1_20_1, SWC_1_40_1) (%, volumetric water content), soil conductivity (EC_1_10_1, EC_1_20_1, EC_1_40_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to December 31, 2021. The site (99.926°E, 38.428°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (1, 2, 13, 24, and 48 m), wind speed and direction profile (windsonic; 1, 2, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 30m, vertically downward), photosynthetically active radiation (4 m and 30m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (30 m, towards south), sunshine duration sensor(30 m, towards south). The observations included the following: air temperature and humidity (Ta_1_1_1, Ta_1_2_1, Ta_1_13_1, Ta_1_24_1 and Ta_1_48_1; RH_1_1_1, RH_1_2_1, RH_1_13_1, RH_1_24_1 and RH_1_48_1) (℃ and %, respectively), wind speed (WS_1_1_1, WS_1_2_1, WS_1_13_1, WS_1_24_1, and WS_1_48_1) (m/s), wind direction (WD_1_1_1, WD_1_2_1, WD_1_13_1, WD_1_24_1, and WD_1_48_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_24_1) (mm), four-component radiation (SWIN_1_30_1, incoming shortwave radiation; SWOUT_1_30_1, outgoing shortwave radiation; LWIN_1_30_1, incoming longwave radiation; LWOUT_1_30_1, outgoing longwave radiation; RN_1_30_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1, TC_1_30_1) (℃), photosynthetically active radiation (PPFD_1_4_1, PPFD_1_30_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1, TS_1_20_1, TS_1_40_1 and TS_1_60_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1, SWC_1_20_1, SWC_1_40_1 and SWC_1_60_1) (%, volumetric water content),soil water potential (SWP_1_5_1, SWP_1_10_1, SWP_1_20_1, SWP_1_40_1 and SWP_1_60_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1, EC_1_20_1, EC_1_40_1 and EC_1_60_1)(μs/cm), Sun_time_1_30_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from January 1 to December 31, 2021. The site (103.668E, 39.208N) was located in Minqin, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.1 and -0.2 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s/m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_10_1, TS_1_20_1) (℃), soil moisture (SWC_1_10_1, SWC_1_10_1) (%, volumetric water content), soil water potential (SWP_1_10_1 , SWP_1_20_1)(kpa) , soil conductivity (EC_1_10_1, EC_1_20_1) (μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2021. The site (100.062° E, 39.238° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1402 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.05 and -0.2m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WS_1_4_1, WS_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing long wave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_20_1) (℃), soil moisture (SWC_1_5_1, SWC_1_20_1) (%, volumetric water content), soil water potential(SWP_1_5_1, SWP_1_20_1), soil conductivity (EC_1_5_1, EC_1_20_1) (μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 4 to December 31, 2021. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2903 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4m, towards south), infrared temperature sensors (4m, towards south, vertically downward), photosynthetically active radiation (4m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1 and Ta_1_8_1; RH_1_4_1 and RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1 and WS_1_8_1) (m/s), wind direction (WD_1_4_1 and WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_1_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1) (%, volumetric water content), soil water potential (SWP_1_5_1, SWP_1_10_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. 2021.6.13-3021.9.8, the data is missing because the wire is bitten off. 8m wind speed and direction sensor failure; 5 and 10cm soil temperature/ moisture/ electrical conductivity sensor failure; 5 and 10cm soil water potential sensor failure; 4m infrared temperature sensor failure. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-8-20 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from January 1 to December 31, 2021. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2014 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_2_1, Ta_1_4_1, Ta_1_8_1, Ta_1_16_1, Ta_1_32_1 and Ta_1_48_1; RH_2 m, RH_1_2_1, RH_1_4_1, RH_1_8_1, RH_1_16_1, RH_1_32_1, and RH_1_48_1) (℃ and %, respectively), wind speed (WS_1_2_1, WS_1_4_1, WS_1_8_1, WS_1_16_1, WS_1_32_1 and WS_1_48_1) (m/s), wind direction (WD_1_2_1, WD_1_4_1, WD_1_8_1, WD_1_16_1, WD_1_32_1 and WD_1_48_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1, TS_1_20_1, TS_1_40_1, TS_1_60_1 and TS_1_80_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1, SWC_1_20_1, SWC_1_40_1, SWC_1_60_1 and SWC_1_80_1) (%, volumetric water content),soil water potential (SWP_1_5_1, SWP_1_10_1, SWP_1_20_1, SWP_1_40_1, SWP_1_60_1 and SWP_1_80_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1, EC_1_20_1, EC_1_40_1, EC_1_60_1 and EC_1_80_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2021. The site (93.709° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 994 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1、SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1、TS_1_20_1) (℃), soil moisture (SWC_1_5_1、SWC_1_20_1) (%, volumetric water content), soil conductivity (SWC_1_5_1、SWC_1_20_1)(μs/cm), sun time(Sun_time_1_4_1). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2021. The site (100.286° E, 38.556° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil temperature/moisture/electrical conductivity profile (-0.05m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_1_8_1; RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_8_1) (m/s), wind direction (WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1) (W/m^2), soil temperature (TS_1_20_1)(℃), soil moisture (SWC_1_20_1)(%, volumetric water content), soil water potential (SWP_1_20_1)(kpa), soil conductivity (EC_1_20_1)(μs/cm). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes the observed surface incident solar radiantion, and sunshine duration derived soalr radiation, and their homogenized series at 156 meteorological stations in Japan from 1870 to 2015. According to Yang's method, the surface solar radiation is calculated from the observed sunshine duration hours, and then the breakpoints of unnatural factors in the data series are adjusted by RH test homogenization method, so as to obtain the regional homogenized monthly solar radiation data set in Japan.
MA Qian, HE Yanyi, WANG Kaicun, SU Liangyuan
Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
"The dataset records average sunshine hours in major areas of Qinghai province from 1998 to 2020. The data are divided by month and year scale. The data are collected from qinghai Statistical Yearbook released by Qinghai Provincial Bureau of Statistics. The dataset contains 23 data tables, all of which have the same structure. For example, the 2001 data table has 9 fields: Field 1: month Field 2: Xining Field 3: Safe Field 4: Door source Field 5: Chabcha Field 6: Colleagues Field 7: Taibu Field 8: Gu Gu Field 9: Delingha"
Qinghai Provincial Bureau of Statistics
This data set is a national high-resolution solar radiation data set covering 34 years (1983.7-2017.6), with a resolution of 10 km. The data unit is W / m2. The data set is developed by merging the global high-resolution (3 hours, 10 km) surface solar radiation data set (1983-2017) with isccp-hxg cloud products as the main input, with ground based sunshine duration derived surface solar raidation data from 2261 meteorological stations in China by using the geographic weighted regression method. The validation results show that this dataset can provide more accurate simulation of long-term variability of surface solar radiation than that of gewex-srb, cmsaf-clara-a2 and the isccp-hxg based surface solar radiation product. This data can provide favorable data support for the application and research of long-term change of hydrology in land surface process simulation.
FENG Fei, WANG Kaicun
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
The spatial-temporal distribution map of topographic shadows in the upper reaches of Heihe River (2018), which is calculated based on the SRTM DEM and the solar position (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The spatial resolution is 100 m and the time resolution is 15 min. The datased can be used in the fields of ecological hydrology and remote sensing research. Using the observed solar radiation at several automatic weather stations in the upper reaches of Heihe River, the accuracy of the calculation results is verified. Results show that the dataset can accurately capture the temporal and spatial changes of the topographic shadow at the stations, and the time error is within 20 minutes.
ZHANG Yanlin
The total solar radiation and the total radiation of absorption and scattering material attenuation are measured by the international general solar radiation meter (li200sz, li-cor, Inc., USA). The measured data are total solar radiation, including direct and diffuse solar radiation, with a wavelength range of 400-1100nm. The unit of measurement is w / m2, and the typical error is ± 3% (incidence angle is within 60 °) under natural lighting. The data of sodankyl ä station in the Arctic comes from cooperation with the site and website download. The coverage time of sodankyl ä station in the Arctic is updated to 2018.
BAI Jianhui
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2018. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Jan. 23 to Jan. 24 because of collector failure; the data during Mar. 17 and May 24 were wrong because of the tower body tilt; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
The meteorological data set of Beiluhe station mainly includes 7 meteorological elements such as atmospheric temperature, wind speed, wind direction, humidity, atmospheric pressure, solar radiation and daily rainfall of 2m. The monitoring station of the data set is located at 92 ° E, 35 ° N and 4600m above sea level. The terrain of the monitoring site is flat, and the vegetation type is alpine meadow. The measuring sensors are manufactured by Campell company, of which the measurement of high temperature and humidity is transmitted The sensor model is HMP45C, the wind speed and direction sensor model is 05103, the atmospheric pressure measurement sensor model is ptb-210, the solar radiation sensor model is nr01, the rain gauge sensor model is t-200b, the time interval of this data set is 1 day, which is obtained through the calculation of 30 minute data. During the monitoring period, the data is stable and continuous. Through the analysis of meteorological data, we can recognize Beilu river The change of local climate is not only helpful, but also an indispensable index in the study of frozen soil environment and engineering.
CHEN Ji
It includes sunshine hours data of Xining, Haidong, Menyuan, Huangnan, Hainan, Guoluo, Yushu, Haixi and other major areas of Qinghai from 1988 to 2016. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. The data table recorded the sunshine hours of every month and year in eight regions of Qinghai. Unit: hour This data set is mainly used in geography and socioeconomic research.
Qinghai Provincial Bureau of Statistics
Based on the data of 21 regular meteorological observation stations in Heihe River Basin and its surrounding areas and 13 national benchmark stations around Heihe River provided by the data management center of Heihe plan, the daily sunshine hours are statistically sorted out and the monthly sunshine hours data of 1961-2010 for many years are calculated. The spatial stability analysis is carried out to calculate the variation coefficient. If the variation coefficient is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly sunshine hours distribution trend is obtained; if the variation coefficient is less than or equal to 100%, the ordinary least square regression is used to calculate the sunshine hours and the geographical terrain factors (longitude, latitude, elevation, slope, aspect, etc.) of the station )The distribution trend of sunshine hours per month is obtained, and the residuals after removing the trend are fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average sunshine hours distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average sunshine hours for many years from 1961 to 2010. Spatial resolution: 500M.
YUE Tianxiang, ZHAO Na
The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.
Gansu meteorological bureau, Qinghai Meteorological Bureau
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn