As a powerful heat source, the Tibetan Plateau (TP) affects the onset, advance and retreat of the Asian monsoon, and the interaction between the westerly belt and the monsoon belt. In order to study the variation of TP thermal effect and its influence on the surrounding climate, the basic data related to TP heat source are needed. This data set is composed of monthly basic heat source data of the TP and its surrounding areas calculated from reanalysis data, and its horizontal range covers 40°E-180° and 20°S-80°N. The spatial resolution is 2.5 ° x2.5 °, and the datasets mainly included ERA5 and NCEP/NCAR reanalysis data.
LI Qingquan
The reconstruction of sunshine hours can better reflect the long-term change trend of surface solar radiation, but only the station data. Therefore, in order to obtain high-resolution grid point data and ensure its accuracy in long-term changes, it is necessary to fuse a variety of surface solar radiation related data. Using the geographic weighted regression (GWR) method, the MODIS 0.1 ° resolution cloud and aerosol retrieval and the surface sunshine hours are combined to reconstruct the surface solar radiation station data. By adding the combination judgment of adjacent point schemes, the accuracy of downscaling results of geographical weighted regression is effectively improved, and the multi-year average value and long-term trend of China are basically consistent with the observation and satellite remote sensing inversion results. Using geographic weighted regression and other methods, the surface wind speed and relative humidity data of 0.1 degree grid are generated; The improved Penman formula is used to calculate the land surface evapotranspiration data.
WANG Kaicun
Clouds cover 70% of the earth's surface and are one of the important factors affecting the balance of atmospheric radiation and climate change. They are also an important part of the global water cycle. Considering the lack of reliable cloud parameter data with high temporal and spatial resolutions in the East Asia-Pacific (EAP) region, the 2016 data were developed using the next-generation geostationary satellite Himawari-8 with a temporal resolution of 1h and spatial resolutions of 0.1° and 0.25°. , 1° cloud parameters datasets. The cloud products include macro- and micro parameters. The macro parameters include: cloud cover (CF), cloud detection (CM), cloud phase detection (CP), cloud top pressure (CTP), cloud top height (CTH) ), cloud top temperature (CTT), cloud type (CT), supercooled water detection (SWC); micro parameters include cloud optical depth (COT), cloud particle effective radius (CER). These cloud parameters produced have reached the international advanced level in terms of precision.
HUSI Letu
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This dataset contains the flux measurements from the Qinghai Lake eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to December 31 in 2021. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The EC was installed at a height of 16.1m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to October 31 in 2021. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Subalpine shrub eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to October 13 in 2021. The site (100°6'3.62"E, 37°31'15.67"N) was located near Dasi, Shaliuhe Town, Gangcha County, Qinghai Province. Data missing due to instrument failure. The elevation is 3495m. The EC was installed at a height of 2.5m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the temperate steppe eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to October 14 in 2021. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210sm. The EC was installed at a height of 2.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
As a key component of the earth's energy balance system, surface longwave downward radiation (LWDR) is of great significance to the study of ecology and climate change. With the continuous improvement of remote sensing estimation accuracy and spatial-temporal resolution and accuracy of reanalysis data, remote sensing and reanalysis data fusion will be a new way to further improve the reliability and spatial-temporal continuity of key parameters such as surface radiation. Considering the difference in spatial-temporal resolution and local regional accuracy of current multi-source LWDR data, the study combines the measured data of stations around the world, spatio-temporal fusion of remote sensing observation data (CERES) with reanalysis data ERA5 and GLDAS, and develops a high-precision surface longwave downward radiation dataset covering the world from 2000 to 2020 with a spatial-temporal resolution of 1h/0.25 °. The correlation coefficient (R), mean deviation error (bias) and root mean square error (RMSE) of the newly developed dataset and the site measured data verified on the land surface are 0.97, -0.95 Wm-2 and 22.38 Wm-2, respectively; On the ocean surface, it is 0.99, -0.88 Wm-2 and 10.96 Wm-2, respectively. In particular, compared with the existing data, the new dataset shows better accuracy and stability in the middle and low latitudes and complex terrain areas.
WANG Tianxing, WANG Shiyao
1) Data content: the 2020 updated database file of the Central Asia Great Lakes region database, which contains the observation data of the total radiation in the ecological stations of the Central Asia Great Lakes region in 2020. 2) Data source and processing method: the data are from the observation data of 6 ecological stations (station numbers: 1130, 1131, 1132, 1133, 1134, 1137) without processing. 3) Data quality description: this data is site data with a time resolution of 1 minute. The data quality control process includes two steps (1) internal consistency check; (2) Time consistency check. 4) Data application achievements and prospects: this data is the basic observation data, which is an important annual supplement to the database of the Great Lakes region of Central Asia, and can provide data support for subsequent research fields such as meteorology, ecology, hydrology and environment, and support the development of project research.
LIU Tie
1) Data content: database file of Central Asia Great Lakes region, including observation data of total radiation elements in basic ecological stations of Central Asia Great Lakes region from 2020 to 2021. 2) Data source and processing method: the data are from the observation data of 8 ecological stations (station numbers: 1130, 1131, 1132, 1133, 1134, 1135, 1137, 1138) without processing. 3) Data quality description: this data is site data, and the time resolution is every 1 minute. The data quality control process includes two steps (2) internal consistency check; (2) Time consistency check. 4) Data application achievements and prospects: this data is the basic observation data, which is an important part of the database of the Great Lakes region in Central Asia. It can provide data support for subsequent research fields such as meteorology, ecology, hydrology and environment, and support the development of project research.
LIU Tie
This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (102.73E, 36.692N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2903 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Suganhu station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (94.12E, 38.99N was located in a desert in Suganhu, which is in Gansu Province. The elevation is 2823 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Sidalong station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to Dec 19 in 2021. The site (99.926E, 38.428N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The EC was installed at a height of 4.0 m above the canopy , and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Xiyinghe station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Minqin station eddy covariance system (EC) in the middle reaches of the Shiyanghe integrated observatory network from January 1 to December 27 in 2021. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2021. The site (101.853E, 37.561N) was located in Wuwei, Gansu Province. The elevation is 3614m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.05, -0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_2_1, Ta_1_4_1, and Ta_1_8_1; RH_1_2_1, RH_1_4_1and RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_2_1, WS_1_4_1 and WS_1_8_1) (m/s), wind direction (WD_1_2_1, WD_1_4_1 and WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s/m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_20_1 and TS_1_40_1) (℃), soil moisture (SWC_1_5_1, SWC_1_20_1 and SWC_1_40_1) (%, volumetric water content), soil water potential (SWP_1_5_1, SWP_1_20_1 and SWP_1_40_1)(kpa) , soil conductivity (EC_1_5_1, EC_1_20_1 and EC_1_40_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. The air pressure data were rejected because of program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from January 1 to December 31, 2021. The site (94.125° E, 38.992° N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 2823 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8m, towards north), wind speed and direction profile (windsonic; 4m and 8m, towards north), air pressure (1m), rain gauge (4m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.1, -0.2 and -0.4m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_10_1, TS_1_20_1, TS_1_40_1) (℃), soil moisture (SWC_1_10_1, SWC_1_20_1, SWC_1_40_1) (%, volumetric water content), soil conductivity (EC_1_10_1, EC_1_20_1, EC_1_40_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to December 31, 2021. The site (99.926°E, 38.428°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (1, 2, 13, 24, and 48 m), wind speed and direction profile (windsonic; 1, 2, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 30m, vertically downward), photosynthetically active radiation (4 m and 30m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (30 m, towards south), sunshine duration sensor(30 m, towards south). The observations included the following: air temperature and humidity (Ta_1_1_1, Ta_1_2_1, Ta_1_13_1, Ta_1_24_1 and Ta_1_48_1; RH_1_1_1, RH_1_2_1, RH_1_13_1, RH_1_24_1 and RH_1_48_1) (℃ and %, respectively), wind speed (WS_1_1_1, WS_1_2_1, WS_1_13_1, WS_1_24_1, and WS_1_48_1) (m/s), wind direction (WD_1_1_1, WD_1_2_1, WD_1_13_1, WD_1_24_1, and WD_1_48_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_24_1) (mm), four-component radiation (SWIN_1_30_1, incoming shortwave radiation; SWOUT_1_30_1, outgoing shortwave radiation; LWIN_1_30_1, incoming longwave radiation; LWOUT_1_30_1, outgoing longwave radiation; RN_1_30_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1, TC_1_30_1) (℃), photosynthetically active radiation (PPFD_1_4_1, PPFD_1_30_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1, TS_1_20_1, TS_1_40_1 and TS_1_60_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1, SWC_1_20_1, SWC_1_40_1 and SWC_1_60_1) (%, volumetric water content),soil water potential (SWP_1_5_1, SWP_1_10_1, SWP_1_20_1, SWP_1_40_1 and SWP_1_60_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1, EC_1_20_1, EC_1_40_1 and EC_1_60_1)(μs/cm), Sun_time_1_30_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from January 1 to December 31, 2021. The site (103.668E, 39.208N) was located in Minqin, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.1 and -0.2 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s/m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_10_1, TS_1_20_1) (℃), soil moisture (SWC_1_10_1, SWC_1_10_1) (%, volumetric water content), soil water potential (SWP_1_10_1 , SWP_1_20_1)(kpa) , soil conductivity (EC_1_10_1, EC_1_20_1) (μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2021. The site (100.062° E, 39.238° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1402 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.05 and -0.2m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WS_1_4_1, WS_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing long wave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_20_1) (℃), soil moisture (SWC_1_5_1, SWC_1_20_1) (%, volumetric water content), soil water potential(SWP_1_5_1, SWP_1_20_1), soil conductivity (EC_1_5_1, EC_1_20_1) (μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 4 to December 31, 2021. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2903 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4m, towards south), infrared temperature sensors (4m, towards south, vertically downward), photosynthetically active radiation (4m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1 and Ta_1_8_1; RH_1_4_1 and RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1 and WS_1_8_1) (m/s), wind direction (WD_1_4_1 and WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_1_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1) (%, volumetric water content), soil water potential (SWP_1_5_1, SWP_1_10_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. 2021.6.13-3021.9.8, the data is missing because the wire is bitten off. 8m wind speed and direction sensor failure; 5 and 10cm soil temperature/ moisture/ electrical conductivity sensor failure; 5 and 10cm soil water potential sensor failure; 4m infrared temperature sensor failure. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-8-20 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from January 1 to December 31, 2021. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2014 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_2_1, Ta_1_4_1, Ta_1_8_1, Ta_1_16_1, Ta_1_32_1 and Ta_1_48_1; RH_2 m, RH_1_2_1, RH_1_4_1, RH_1_8_1, RH_1_16_1, RH_1_32_1, and RH_1_48_1) (℃ and %, respectively), wind speed (WS_1_2_1, WS_1_4_1, WS_1_8_1, WS_1_16_1, WS_1_32_1 and WS_1_48_1) (m/s), wind direction (WD_1_2_1, WD_1_4_1, WD_1_8_1, WD_1_16_1, WD_1_32_1 and WD_1_48_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1, TS_1_20_1, TS_1_40_1, TS_1_60_1 and TS_1_80_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1, SWC_1_20_1, SWC_1_40_1, SWC_1_60_1 and SWC_1_80_1) (%, volumetric water content),soil water potential (SWP_1_5_1, SWP_1_10_1, SWP_1_20_1, SWP_1_40_1, SWP_1_60_1 and SWP_1_80_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1, EC_1_20_1, EC_1_40_1, EC_1_60_1 and EC_1_80_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2021. The site (93.709° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 994 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1、SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1、TS_1_20_1) (℃), soil moisture (SWC_1_5_1、SWC_1_20_1) (%, volumetric water content), soil conductivity (SWC_1_5_1、SWC_1_20_1)(μs/cm), sun time(Sun_time_1_4_1). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2021. The site (100.286° E, 38.556° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil temperature/moisture/electrical conductivity profile (-0.05m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_1_8_1; RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_8_1) (m/s), wind direction (WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1) (W/m^2), soil temperature (TS_1_20_1)(℃), soil moisture (SWC_1_20_1)(%, volumetric water content), soil water potential (SWP_1_20_1)(kpa), soil conductivity (EC_1_20_1)(μs/cm). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This meteorological data is the basic meteorological data of air temperature, relative humidity, wind speed, precipitation, air pressure, radiation, soil temperature and humidity observed in the observation site (86.56 ° e, 28.21 ° n, 4276m) of the comprehensive observation and research station of atmosphere and environment of Qomolangma, Chinese Academy of Sciences from 2019 to 2020. Precipitation is the daily cumulative value. All data are observed and collected in strict accordance with the instrument operation specifications, and some obvious error data are eliminated when processing and generating data The data can be used by students and scientific researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from Qomolangma station for atmospheric and environmental observation and research, Chinese Academy of Sciences (QOMS / CAS))
XI Zhenhua
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
The data are fy-4a ground solar radiation products in Qinghai Tibet Plateau, including GHI \ DNI \ dif The channels involved in FY4 surface solar incident radiation inversion algorithm include six channels of imager visible light, near-infrared and short wave infrared: ch1 (0.45-0.49 μ m), CH2 (0.55-0.75 μ m), CH3 (0.75-0.90 μ m), CH4 (1.36-1.39 μ m), CH5 (1.58-1.64 μ m) and ch6 (2.1-2.35 μ m). The regression model relied on by the algorithm needs to be established through radiative transfer simulation and statistical analysis in advance. The regression model defines the regression relationship between the surface solar incident radiation and the multi-channel radiation observation of the imager, which is a function of the solar observation geometry and the most important influence parameters (cloud, aerosol, water vapor content, surface albedo, surface altitude, etc.). The algorithm uses the short wave radiation observation from channel 1 to channel 6 of FY-4 satellite imager to obtain the instantaneous state parameter information of atmosphere and surface, and obtains the surface altitude information from the surface elevation data. After determining the instantaneous atmospheric and surface states, combined with the solar angle and observation angle, according to the previously established regression model data, multi-dimensional linear interpolation is carried out to obtain the inversion products of surface solar incident radiation.
SHEN Yanbo, HU Yueming, HU Liqin
1) The Qinghai Tibet plateau surface meteorological driving data set (2019-2020) includes four meteorological elements: land surface temperature, mean total precipitation rate, mean surface downward long wave radiation flux and mean surface downward short wave radiation flux. 2) The data set is based on era5 reanalysis data, supplemented by MODIS NDVI, MODIS DEM and fy3d mwri DEM data products. The era5 reanalysis data were downscaled by multiple linear regression method, and finally generated by resampling. 3) All data elements of the Qinghai Tibet plateau surface meteorological driving data set (2019-2020) are stored in TIFF format. The time resolution includes (daily, monthly and annual), and the spatial resolution is unified as 0.1 ° × 0.1°。 4) This data is convenient for researchers and students who will not use such assimilated data in. NC format. Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data.
ZHU Liping, DU Baolong
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
Surface downward radiation (SDR), including shortwave downward radiation (SWDR) and longwave downward radiation (LWDR), is of great importance to energy and climate studies. Considering the lack of reliable SDR data with a high spatiotemporal resolution in the East Asia-Pacific (EAP) region, we derived SWDR and LWDR at 10-min and 0.05° resolutions for this region from 2016-2020 based on the next-generation geostationary satellite Himawari-8 (H-8). The SDR product is unique in terms of its all-sky features, high accuracy and high resolution levels. The cloud effect is fully considered in the SDR product, and the influence of high aerosol loadings and topography on the SWDR are considered. Compared to benchmark products of the radiation, such as Clouds and the Earth’s Radiant Energy System (CERES) and the European Centre for Medium-Range Weather Forecasts (ECMWF) next-generation reanalysis (ERA5), and the Global Land Surface Satellite (GLASS), not only is the resolution of the new SDR product notably much higher but the product accuracy is also higher than that of those products. In particular, hourly and daily root mean square errors of hourly and daily of the new SWDR are 104.9 and 31.5 Wm-2, respectively, which are much smaller than those of CERES (at 121.6 and 38.6 Wm-2, respectively), ERA5 (at 176.6 and 39.5 Wm-2, respectively) and GLASS (daily of 36.5 Wm-2). Meanwhile, RMSEs of hourly and daily values of the new LWDR are 19.6 and 14.4 Wm-2, respectively, which are comparable to that of CERES and ERA5, and even better over high altitude regions.
HUSI Letu, WANG Tianxing, DU Yihan
This dataset contains the fluxes and meteorological data of Weishan (Gaoying) flux site of Tsinghua University from May 17, 2005 to September 26, 2006. The site (116.0542° E, 36.6487° N, 30 m above sea level) was built on March 18, 2005 and is located in Xiaozhuang Town, Chiping District, Liaocheng City, Shandong Province. It belongs to Weishan Irrigation District along the lower Yellow River. The local climate is characterized as temperate monsoons, with an average annual temperature of 13.8 ℃, an average annual precipitation of 553mm, most of which occurs between June and October, and an average annual potential evaporation of 1950mm. The soil type is silt loam. For the soil of the top 5 cm, the average saturated soil water content, field capacity and wilting point in volumetric values are 0.43, 0.33 and 0.10 m3m-3, respectively. The height of the flux tower is 10m, and the area within about 1 km radius around the flux tower is largely homogeneous winter wheat-summer maize rotation cropland. The winter wheat is generally sown in mid-October and harvested in early June of the following year, while the summer maize is usually planted directly into the stubbles of wheat at the same location immediately after the harvest of wheat and is harvested in late September to early October. See the file named “Supplementary data_WeishanGaoying20052006.xlsx” for specific sowing, harvesting and irrigation dates. The surface flux data is measured by the eddy covariance system, which is composed of a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT, USA) and an open-path infrared gas analyzer (IRGA) (LI-7500, LI-COR, Inc., Lincoln, NE, USA) with an installation height of 3.7m. The 30-minute net ecosystem carbon exchange (NEE), latent heat flux (LE) and sensible heat flux (H) data were obtained after the raw 10Hz data were processed by Eddypro software. The preprocessing steps included despiking, double coordinate rotation, 30-min block averaging, time lag compensation, spectral corrections, the Webb-Pearman-Leuning (WPL) density correction, a quality check using the “0-1-2 system”. Then the 30-min data were screened as follows: (1) remove bad quality fluxes with quality flag 2; (2) limit H and LE to - 200 ~ 500 W m-2 and - 200 ~ 800 W m-2, respectively; (3) the data during the precipitation events were excluded. Then, REddyproc software is used to filter the data under low turbulence mixing conditions (i.e. filter the flux data according to the friction wind speed u*), fill the gaps in the time series, and then the NEE was divided into ecosystem respiration (Reco) and gross primary production (GPP) by the nighttime partitioning method. The published dataset includes: year, month, day, time, atmospheric pressure (P), infrared surface temperature (Tsurf), wind speed (Ws), wind direction (Wd), air temperature (Tair) and relative humidity (rH) at 2m, downward short wave radiation (Rsd), upward short wave radiation (Rsu), downward long wave radiation (Rld), upward long wave radiation (Rlu), Net radiation (Rn), incident photosynthetically active radiation (PAR_dn), reflected photosynthetically active radiation (PAR_up), precipitation (precip), groundwater level (GW), 5cm/10cm/20cm/40cm/80cm/160cm soil water content (soil_VW_ 5cm / 10cm / 20cm / 40cm / 80cm / 160cm) and soil temperature (soil_T_5cm / 10cm / 20cm / 40cm / 80cm / 160cm), soil heat flux at 5cm depth (soil_ G) , raw data of net ecosystem carbon exchange (NEE_raw), raw data of latent heat flux (LE_raw), raw data of sensible heat flux (H_raw), net ecosystem carbon exchange after gap filling (NEE_ f) , latent heat flux after gap filling (LE_f), sensible heat flux after gap filling (H_f), ecosystem respiration imputation (Reco_f), gross primary productivity (GPP_f). The data are stored in .xlsx format at 30-minute intervals. Null values in the dataset are represented by NA. Please refer to Lei and Yang (2010a, 2010b) for detailed information of this site and the observation instruments.
LEI Huimin
Accurate evapotranspiration (ET) estimation is important for understanding hydrological cycle and water resources management in the cropland. Based on eight flux sites within the North China Plain (NCP) and the surrounding area, which were integrated together for the first time, we applied support vector regression method to develop ET dataset for the cropland in NCP from 2001 to 2015 with 1km spatial resolution and eight-day temporal interval.
LEI Huimin
Accurate evapotranspiration (ET) estimation is important for understanding hydrological cycle and water resources management in the cropland. Based on eight flux sites within the North China Plain (NCP) and the surrounding area, which were integrated together for the first time, we applied support vector regression method to develop ET dataset for the cropland in NCP from 1982 to 2015 with 1/12° spatial resolution and eight-day temporal interval.
LEI Huimin
As an important part of global semi-arid grassland, adequately understanding the spatio-temporal variability of evapotranspiration (ET) over the temperate semi-arid grassland of China (TSGC) could advance our understanding of climate, hydrological and ecological processes over global semi-arid areas. Based on the largest number of in-situ ET measurements (13 flux towers) within the TSGC, we applied the support vector regression method to develop a high-quality ET dataset at 1 km spatial resolution and 8-day timescale for the TSGC from 1982 to 2015. The model performed well in validation against flux tower‐measured data and comparison with water-balance derived ET.
LEI Huimin
This dataset includes the observed surface incident solar radiantion, and sunshine duration derived soalr radiation, and their homogenized series at 156 meteorological stations in Japan from 1870 to 2015. According to Yang's method, the surface solar radiation is calculated from the observed sunshine duration hours, and then the breakpoints of unnatural factors in the data series are adjusted by RH test homogenization method, so as to obtain the regional homogenized monthly solar radiation data set in Japan.
MA Qian, HE Yanyi, WANG Kaicun, SU Liangyuan
The data set contains the eddy correlator observation data of xiyinghe station of Lanzhou University cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in taola village, Xianmi Township, Menyuan County, Haibei, Qinghai, with alpine meadow on the underlying surface. The longitude and latitude of the observation point are 101.855e, 37.561n and the altitude is 3616m. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. Data from September 10 to October 22 are missing. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format.
ZHAO Changming, ZHANG Renyi
The data set includes the eddy correlator observation data of suganhu station of Lanzhou University cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in Sugan lake, Gansu Province, with wetland on the underlying surface. The longitude and latitude of the observation point are 94.12e, 38.99n and 2823m above sea level. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Sidalong station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from Mar 26 to Dec 31 in 2020. The site (99.926E, 38.428N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The EC was installed at a height of 4.0 m above the canopy , and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
The data set contains the observation data of vortex correlator at Minqin station of cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in Minqin County, Wuwei City, Gansu Province, between Badain Jaran Desert and Tengger Desert in Western China. The longitude and latitude of the observation point are 103.668e, 39.208n and 1020m above sea level. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format.
ZHAO Changming, ZHANG Renyi
The data set contains the eddy correlator observation data of Guazhou station of Lanzhou University cold and arid area scientific observation network of Lanzhou University from January 1, 2020 to December 31, 2020. The station is located in Liuyuan Town, Guazhou County, Jiuquan, Gansu Province, with desert on the underlying surface. The longitude and latitude of the observation point are 95.673e, 41.405n, and the altitude is 2014m. The frame height of eddy correlator is 4m, the sampling frequency is 10Hz, the ultrasonic direction is due north, and the distance between ultrasonic anemometer (csat3) and CO2 / H2O analyzer (li7500a) is 17cm. The original observation data of eddy correlator is 10Hz, and the released data is the 30 minute data processed by eddypro software. The main processing steps include: field value elimination, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality of each flux value is evaluated, mainly the atmospheric stability( Δ St) and turbulence similarity characteristics (ITC). The 30min flux value output by eddypro software is also screened: (1) eliminate the data when the instrument is wrong; (2) Eliminate the data 1H before and after precipitation; (3) Eliminate the data with a loss rate of more than 10% every 30min in the 10Hz original data. The average period of observation data is 30 minutes, 48 data a day, and the missing data is marked as - 6999. The published observation data include: date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s), standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (℃), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), Obukhov length L (m), sensible heat flux HS (w / m2), latent heat flux Le (w / m2), carbon dioxide flux FC (mg / (M2S)), quality identification QA of sensible heat flux_ HS, quality identification of latent heat flux QA_ Le, quality identification QA of carbon dioxide flux_ Fc。 The quality identification of sensible heat, latent heat and carbon dioxide flux is divided into nine levels (quality identification 1-3 has good data quality, 4-6 has good data quality, 7-8 has poor data quality (better than interpolated data), and 9 has poor data quality). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; The data is stored in *. XLS format. For observation data processing, please refer to Liu et al. (2011).
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Subalpine shrub eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to December 31 in 2020. The site (100°6'3.62"E, 37°31'15.67" N ) was located near Dasi, Shaliuhe Town, Gangcha County, Qinghai Province. Data missing due to instrument failure. The elevation is 3495m. The EC was installed at a height of 2.5m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Qinghai Lake eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to December 31 in 2020. Due to the terrible climate in winter and spring, those instruments need maintenance in time. However, the Covid-19 blocked our maintenance, those data in January 1 to April 6 and November 1 to December 31 in 2020 were missing. The effective range of latent heat flux is -500~500 W/m2. The negative value may be caused by condensed water. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The EC was installed at a height of 16.1m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the temperate steppe eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to December 31 in 2020, but instrument failure and COVID-2019 resulted in lack of data from April 13 to July 20. The site (100°14'8.99"E, 37°14'49.00"N) was located in Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210sm. The EC was installed at a height of 2.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 1 to December 31 in 2020,but instrument failure and COVID-2019 resulted in lack of data from February 1 to June 27. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
Terrestrial actual evapotranspiration (ETa) is an important component of terrestrial ecosystems because it links the hydrological, energy, and carbon cycles. However, accurately monitoring and understanding the spatial and temporal variability of ETa over the Tibetan Plateau (TP) remains very difficult. Here, the multiyear (2000-2018) monthly ETa on the TP was estimated using the MOD16-STM model supported by datasets of soil properties, meteorological conditions, and remote sensing. The estimated ETa correlates very well with measurements from 9 flux towers, with low root mean square errors (average RMSE = 13.48 mm/month) and mean bias (average MB = 2.85 mm/month), and strong correlation coefficients (R = 0.88) and the index of agreement values (IOA = 0.92). The spatially averaged ETa of the entire TP and the eastern TP (Lon > 90°E) increased significantly, at rates of 1.34 mm/year (p < 0.05) and 2.84 mm/year (p < 0.05) from 2000 to 2018, while no pronounced trend was detected on the western TP (Lon < 90°E). The spatial distribution of ETa and its components were heterogeneous, decreasing from the southeastern to northwestern TP. ETa showed a significantly increasing trend in the eastern TP, and a significant decreasing trend throughout the year in the southwestern TP, particularly in winter and spring. Soil evaporation (Es) accounted for more than 84% of ETa and the spatial distribution of temporal trends was similar to that of ETa over the TP. The amplitudes and rates of variations in ETa were greatest in spring and summer. The multi-year averaged annual terrestrial ETa (over an area of 2444.18×103 km2) was 376.91±13.13 mm/year, equivalent to a volume of 976.52±35.7 km3/year. The average annual evapotranspirated water volume over the whole TP (including all plateau lakes, with an area of 2539.49×103 km2) was about 1028.22±37.8 km3/year. This new estimated ETa dataset is useful for investigating the hydrological impacts of land cover change and will help with better management of watershed water resources across the TP.
MA Yaoming, CHEN Xuelong,
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2019. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This data set is a national high-resolution solar radiation data set covering 34 years (1983.7-2017.6), with a resolution of 10 km. The data unit is W / m2. The data set is developed by merging the global high-resolution (3 hours, 10 km) surface solar radiation data set (1983-2017) with isccp-hxg cloud products as the main input, with ground based sunshine duration derived surface solar raidation data from 2261 meteorological stations in China by using the geographic weighted regression method. The validation results show that this dataset can provide more accurate simulation of long-term variability of surface solar radiation than that of gewex-srb, cmsaf-clara-a2 and the isccp-hxg based surface solar radiation product. This data can provide favorable data support for the application and research of long-term change of hydrology in land surface process simulation.
FENG Fei, WANG Kaicun
This data set is the data set of climate elements in Hoh Xil area of Qinghai Province, covering the data of 14 observation stations, recording the climate observation data in 1990 in detail. Hoh Xil area in Qinghai Province has a high terrain with an average altitude of over 5000m. The climate is cold, the air is thin and the natural environment is bad. The vast area is still no man's land, known as "forbidden zone for human beings". Due to less interference from human activities, most of the area still maintains its original natural state. Its special geographical location, crustal structure and natural environment, as well as the unique composition of the biological flora, have been the focus of domestic surgical circles. The original data of the data set is digitized from the book "natural environment of Hoh Xil, Qinghai Province". The climate observation data include solar radiation, temperature, precipitation, air pressure, wind speed, etc. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.
LI Bingyuan
This dataset contains the flux measurements from the Minqin station eddy covariance system (EC) in the middle reaches of the Shiyanghe integrated observatory network from August 29 to December 31 in 2019. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This data set includes the monthly average actual evapotranspiration of the Tibet Plateau from 2001 to 2018. The data set is based on the satellite remote sensing data (MODIS) and reanalysis meteorological data (CMFD), and is calculated by the surface energy balance system model (SEBS). In the process of calculating the turbulent flux, the sub-grid scale topography drag parameterization scheme is introduced to improve the simulation of sensible and latent heat fluxes. In addition, the evapotranspiration of the model is verified by the observation data of six turbulence flux stations on the Tibetan Plateau, which shows high accuracy. The data set can be used to study the characteristics of land-atmosphere interaction and the water cycle in the Tibetan Plateau.
HAN Cunbo, MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang*, CHEN Xuelong, SU Zhongbo
1) Data content (including elements and significance): 21 stations (Southeast Tibet station, Namucuo station, Zhufeng station, mustag station, Ali station, Naqu station, Shuanghu station, Geermu station, Tianshan station, Qilianshan station, Ruoergai station (northwest courtyard), Yulong Xueshan station, Naqu station (hanhansuo), Haibei Station, Sanjiangyuan station, Shenzha station, gonggashan station, Ruoergai station( Chengdu Institute of biology, Naqu station (Institute of Geography), Lhasa station, Qinghai Lake Station) 2018 Qinghai Tibet Plateau meteorological observation data set (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) 2) Data source and processing method: field observation at Excel stations in 21 formats 3) Data quality description: daily resolution of the site 4) Data application results and prospects: Based on long-term observation data of various cold stations in the Alpine Network and overseas stations in the pan-third pole region, a series of datasets of meteorological, hydrological and ecological elements in the pan-third pole region were established; Strengthen observation and sample site and sample point verification, complete the inversion of meteorological elements, lake water quantity and quality, above-ground vegetation biomass, glacial frozen soil change and other data products; based on the Internet of Things technology, develop and establish multi-station networked meteorological, hydrological, Ecological data management platform, real-time acquisition and remote control and sharing of networked data.
ZHU Liping,
(1) This data set is the carbon flux data set of Shenzha alpine wetland from 2016 to 2019, including air temperature, soil temperature, precipitation, ecosystem productivity and other parameters. (2) The data set is based on the field measured data of vorticity, and adopts the internationally recognized standard processing method of vorticity related data. The basic process includes: outlier elimination coordinate rotation WPL correction storage item calculation precipitation synchronization data elimination threshold elimination outlier elimination U * correction missing data interpolation flux decomposition and statistics. This data set also contains the model simulation data calibrated based on the vorticity correlation data set. (3) the data set has been under data quality control, and the data missing rate is 37.3%, and the missing data has been supplemented by interpolation. (4) The data set has scientific value for understanding carbon sink function of alpine wetland, and can also be used for correction and verification of mechanism model.
Da Wei
This dataset contains the flux measurements from the Qinghai Lake eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from October 23 in 2018 to September 27 in 2019. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The EC was installed at a height of 16.1m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Subalpine shrub eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from April 28 to December 31 in 2019. The site (100°6'3.62"E, 37°31'15.67" N ) was located near Dasi, Shaliuhe Town, Gangcha County, Qinghai Province. The elevation is 3495m. The EC was installed at a height of 2.5m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from September 3 in 2018 to December 31 in 2019. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the temperate steppe eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from April 26 to December 31 in 2019. The site (100°14'8.99"E, 37°14'49.00"N) was located in the south of Sanjiaocheng sheep breeding farm, Gangcha County, Qinghai Province. The elevation is 3210sm. The EC was installed at a height of 2.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 31 in 2019. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from January 1 to December 31, 2019. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2016 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, Ta_8 m, Ta_16 m, Ta_32 m, and Ta_48 m; RH_2 m, RH_4 m, RH_8 m, RH_16 m, RH_32 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, Ws_8 m, Ws_16 m, Ws_32 m, and Ws_48 m) (m/s), wind direction (WD_2 m, WD_4 m, WD_8 m, WD_16 m, WD_32 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_80 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_80 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, SWP_60cm, and SWP_80cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, Ec_60cm, and Ec_80cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data during August 3 to 24 were missing because the power supply failure; From April 4, 2019, 2m air temperature and humidity sensor failure; from May.10, 2019, 48m wind speed and direction sensor failure; from July, 2019, 10cm soil moisture sensor failure. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Xiyinghe station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 31 in 2019. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Suganhu station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from November 29 to December 31 in 2019. The site (94.12E, 38.99N was located in a desert in Suganhu, which is in Gansu Province. The elevation is 2823 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2019. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2019. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2019. The site (100.285° E, 38.555° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil soil temperature/moisture/electrical conductivity profile (-0.05 m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_8m; RH_3m, RH_5 m, RH_8m) (℃ and %, respectively), wind speed (Ws_8m) (m/s), wind direction (WD_8m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_5 cm) (W/m^2), soil temperature (Ts_5cm)(℃), soil moisture (Ms_5cm)(%, volumetric water content), photosynthetically active radiation (μmol/ (s m^2)), soil water potential (Swp_5cm)(kpa), soil conductivity (Ec_5cm)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 1 to November 2, 2019. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2912 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4 m, towards south),infrared temperature sensors (2 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation;-0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m and Ta_8 m; RH_4 m and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5 cm, Gs_10 cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential (SWP_5cm,SWP_10cm)(kpa), soil conductivity (EC_5cm,EC_10cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from August 16 to December 31, 2019. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, and Ta_8 m; RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_10 cm, Ts_20 cm) (℃), soil moisture (Ms_10 cm, Ms_20 cm) (%, volumetric water content), soil water potential (SWP_10cm , SWP_20cm)(kpa) , soil conductivity (Ec_10cm, Ec_20cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The wind speed and direction profile data were rejected because of sensor failure; The soil water potential and moisture profile data were rejected because of sensor failure; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Liancheng station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from August 17 to November 1 in 2019. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Yongdeng city, Gansu Province. The elevation is 2912 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Changming, ZHANG Renyi
Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019. The data for 2019-2021 was updated in 2021.
PAN Xiaoduo
The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.
Felix Nieberding, MA Yaoming, Cristian Wille, Gerardo Fratini, Magnus Ole Asmussen, Yuyang Wang*, MA Weiqiang*, Torsten Sachs
Solar global and direct radiation are measured by radiation sensors (Model TBQ-4-1, TBS-2, China), and temperature and humidity are measured by a HOBO weather station (Model H21, onset company, USA). This dataset is solar radiation and meteorological variables, including solar globla and direct radiation in the wavelength range of 270-3200nm, unit: w/m2. The units of temperature, humidity and water vapor pressure are ℃, %, hPa, respectively. The dataset of solar radiation and meteorological elements come from the measurements of data providers. Data coverage time is 2013-2016. The data set can be used to study the solar radiation and its change mechanism in a subtropical region, China.
BAI Jianhui
The temporal resolution of temperature and radiation data in Central Asia is monthly scale, and the spatial resolution is 0.5 degree and 0.05 degree, respectively. The GCS_WGS_1984 projection coordinate system was used. Among them, the downward short wave radiation, air temperature and vapor pressure data of GLDAS, surface temperature / emissivity data of MOD11C3, surface albedo data of MCD43C3 and ASTER_GEDv4.1 are used for radiation data calculation; the temperature data was calculated by MOD06_ L2 cloud products and MOD07_ L2 atmospheric profile data was calculated. This data is based on the advanced remote sensing algorithm and makes full use of the current high-precision remote sensing data and products, which is different from the traditional climate model for the estimation of climate elements. The data can be used to analyze the spatial and temporal variation characteristics of water resources in Central Asia, analyze the supply-demand relationship of agricultural water resources and evaluate the development potential of water resources.
SONG Jinxi, JIANG Xiaohui
Terrestrial actual evapotranspiration (ET), including evaporation from soil and water surfaces, evaporation of rainfall interception, transpiration of vegetation canopy and sublimation of snow and glaciers, is an important component of the terrestrial water cycle and links the hydrological, energy, and carbon cycles. The dataset of ETMonitor-GlobalET-2013-2014 is obtained based on ETMonitor model, which combines parameterizations for different processes and land cover types, with multi-source satellite data as input. Several remote sensing based variables, e.g. net radiation flux and dynamic water body area, and meteorological variables from ERA5 reanalysis dataset, were used as input to estimate daily ET. The ET estimation is conducted at daily temporal step and 1km spatial resolution, and the generated global ET dataset is at 5km resolution and daily time step for publication. The data type is 16-bit signed integer, the scale factor is 0.1, and the unit is mm/day.
ZHENG Chaolei, JIA Li , HU Guangcheng
The spatial-temporal distribution map of topographic shadows in the upper reaches of Heihe River (2018), which is calculated based on the SRTM DEM and the solar position (http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The spatial resolution is 100 m and the time resolution is 15 min. The datased can be used in the fields of ecological hydrology and remote sensing research. Using the observed solar radiation at several automatic weather stations in the upper reaches of Heihe River, the accuracy of the calculation results is verified. Results show that the dataset can accurately capture the temporal and spatial changes of the topographic shadow at the stations, and the time error is within 20 minutes.
ZHANG Yanlin
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
Based on the WRF model, using ERA5 reanalysis data as the initial and boundary fields, the high-resolution low-level atmospheric structure and the earth atmosphere exchange data set of the Qinghai Tibet Plateau are preliminarily obtained by the method of dynamic downscaling. The time range of this data set is from August 1 to August 31, 2014, with a time resolution of 1 hour, a horizontal range of 25 °N-40 °N, 70oE-105oE, and a horizontal resolution of 0.05 °. The data format is NetCDF, and one file is output every hour. The file is named after the date. The lower atmospheric structure data includes temperature, relative humidity, water vapor mixing ratio, potential height, meridional wind and latitudinal wind meteorological elements, with 34 isobaric surfaces in the vertical direction; the surface air exchange data set includes the upward / downward short wave radiation, upward / downward long wave radiation, surface sensible heat and flux, 2m air temperature and water vapor mixing ratio, 10m wind, etc. The data set can provide data support for the study of weather process and climate environment in the Tibetan Plateau.
Ma Shupo
The total solar radiation and the total radiation of absorption and scattering material attenuation are measured by the international general solar radiation meter (li200sz, li-cor, Inc., USA). The measured data are total solar radiation, including direct and diffuse solar radiation, with a wavelength range of 400-1100nm. The unit of measurement is w / m2, and the typical error is ± 3% (incidence angle is within 60 °) under natural lighting. The data of sodankyl ä station in the Arctic comes from cooperation with the site and website download. The coverage time of sodankyl ä station in the Arctic is updated to 2018.
BAI Jianhui
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
YANG Kun
The Tibetan plateau (TP), called as “the third pole of the earth” is the water tower of Asia not only feed tens of millions of people, but also maintain fragile ecosystems in arid region of northwestern China. Temporal-spatially complete representations of land surface temperature are required for many purposes in environmental science, especially in third pole where the traditional ground measurement is difficult and therefore the data is sparse. The cloud-free datasets of daily mean land surface temperature (LST) and mean annual land surface temperature (MAST) during 2004 to 2016 were released and derived from the quartic daily MODIS (the Moderate Resolution Imaging Spectroradiometer) Terra/Aqua LST products with a resolution of 1 km using a pragmatic data processing algorithm (Ran et al., 2015; 2017a). The comparison between radiance-based LST measurement and the estimated LST shows good agreement in the daily and inter-annual variability, with a correlation of 0.95 and 0.99 and bias of -1.73℃ (±3.38℃) and -2.07℃ (±1.05℃) for daily-mean-LST and MAST, respectively (Ran et al., 2017c). The systematic error is mainly source from the defined of daily mean LST, which is represented by the arithmetic average of the daytime and nighttime LSTs. The random error is mainly source from the uncertainty of the original MODIS LST values, especially for the daytime LST products. Trend validation using air temperatures from 94 weather stations indicate that the warming trends derived from time series MAST data is comparable with that derived from CMA data. The dataset is potential useful for various studies, including climatology, hydrology, meteorology, ecology, agriculture, public health, and environmental monitoring in the third pole and around regions.
ZHOU Yanzhao
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were one German BLS900 at Sidaoqiao Superstation. The north tower was set up with the BLS900 receiver and the south tower was equipped with the BLS900 transmitter. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>7.58E-14). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The missing data from the BLS900 instrument were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
As the third pole of the Earth, the Tibetan Plateau has a significant impact on regional and global weather and climate as a heat source in spring and summer. In order to explore the temporal and spatial variation characteristics of multi-scale thermal forcing in different time on the plateau, it is necessary to establish a set of plateau heat source (collection) data based on observation data of continuous and reliable long-term observation. Based on the meteorological elements (surface temperature, surface air temperature, wind speed at the height of 10m, daily cumulative precipitation, etc.) of the 80 (32) observation stations on the Tibetan Plateau from 1979 to 2016 (1960-2016) of China Meteorological Bureau, the sensible heat(SH) and latent heat(LH) was calculated. Meanwhile, using satellite data processing to obtain the net radiation flux (RC) from 1984 to 2015 on the plateau, and then a set of quality controlled long-term plateau heat source data was obtained. This data set considers the diurnal variation of the overall heat transfer coefficient when calculating the surface sensible heat flux.
HU Wenting
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Arou Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Arou Superstation: BLS450 and zzlas, produced by Germany and China, respectively. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. The site (north: 100.471° E, 38.057° N; south: 100.457° E, 38.038° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled 1 minute at both BLS450 and zzlas. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Mininum X Intensity<50; zzlas: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the problems of storing and wireless transmission, data from 5 July to 24 August, were not collected. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Latent heat flux during November 9 to 21, 2018 were missing due to the sensor malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2018. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Jan. 23 to Jan. 24 because of collector failure; the data during Mar. 17 and May 24 were wrong because of the tower body tilt; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Jingyangling station eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from August 28 to December 31 in 2018. The site (101.1160E, 37.8384N) was located in the Jingyangling, near Qilian County in Qinghai Province. The elevation is 3750 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Daman Superstation: BLS450 and BLS900, produced by Germany. The north tower was set up with the BLS450 receiver and the BLS900 transmitter, and the south tower was equipped with the BLS450 transmitter and the BLS900 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 22.45 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS450 and BLS900. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>1.43E-13). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the BLS450 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from September 2 to December 18 in 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Huazhaizi station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.3201° E, 38.7659° N) was located in the Zhangye City in Gansu Province. The elevation is 1731 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during May 13 to July 12 and July 16 to August 21, 2018 were missing due to the malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.
YANG Kun, HE Jie, WENJUN TANG , LU Hui, QIN Jun , CHEN Yingying, LI Xin
This data set contains the data of meteorological elements observed in the pass station upstream of heihewen meteorological observation network on January 1, 2015 and December 31, 2015.The site is located in da dong shu pass, qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421E, 38.0142N, and the altitude is 4148m.Data including two observation points, all in pass observatory, located about 10 m, a set of continuous observation in 2015 (30 min output), another set for September 18, 2015 in 10 m high pass new stations (10 min), specific include: air temperature, relative humidity sensors at 5 m, toward the north (two sets of observation, 10 min and 30 min output);The barometer is installed in the skid-proof box on the ground (two groups of observation, 10min and 30min output respectively);The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north (two groups, 10min and 30min output respectively).The four-component radiometer consists of two observation points, one is installed at the meteorological tower 6m, facing due south (10min output), and the other is installed on the support 1.5m above the ground (30min output).Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed for 10min and 30min respectively).The soil moisture probe was buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed for 10min and 30min respectively).The soil heat flow plate was buried 6cm underground (observed in two groups, 10min (3 heat flow plates) and 30min (2 heat flow plates)). Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 or 48 data per day (every 10min or 30min) should be ensured.The four-component long-wave radiation output of 30min was between January 1, 2015 and January 1, 2015.The observation data was lost between 5.24 and 7.12 after 30min due to the collector problem.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
The data set contains the observation data of large aperture scintillator from January 1, 2016 to December 31, 2016. Two large aperture scintillation meters, bls450 and zzlas, are installed respectively. The site is located in donghuayuan Town, Huailai County, Hebei Province. The longitude and latitude of the observation point are 115.7880e, 40.3491n and 480m above sea level. The effective height of the large aperture scintillator is 14m, the optical path length is 1870m, the longitude and latitude of the transmitter are 115.8023e, 40.3596n, and the longitude and latitude of the receiver are 115.7825e and 40.3522n. The acquisition frequency of bls450 and zzlas is 5Hz and 1Hz respectively, with an average output of 1min. The original data of large aperture scintillator is 1 min, and the released data is 30 min average data after processing and quality control. The sensible heat flux is mainly obtained by iterative calculation based on Monin obkhov similarity theory and combined with automatic weather station data. In the process of iterative calculation, for bls450, the stability function of thiermann and Grassl, 1992 is selected; for zzlas, the stability function of Andreas, 1988 is selected. The main quality control steps include: (1) eliminating the data of cn2 saturation; (2) eliminating the data with weak demodulation signal intensity; (3) eliminating the data of precipitation time and one hour before and after; (4) eliminating the data of weak turbulence under stable conditions (U * less than 0.1m/s). Several explanations about the published data are as follows: (1) the Las data is mainly bls450, and the missing time is supplemented by zzlas observation, and the missing time is marked with - 6999. (2) Data header: date / time: date / time, cn2: structure parameter of air refraction index (m-2 / 3), H_ Las: sensible heat flux (w / m2). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; the data is stored in *. XLS format. Guo et al., 2020; Liu et al., 2013
LIU Shaomin, XU Ziwei
The data set contains the meteorological element observation data of ebao station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2016.The station is located in ebao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.9151E, 37.9492N, and the altitude is 3294m.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The four-component radiation and infrared temperature were between October 11, 2015 and November 5, 2015.The instrument of the observation tower was re-adjusted between 11.1 and 11.5, and the data was missing;(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the data of eddy correlation instrument observation in the upstream pass station of heihe hydrological and meteorological observation network on January 1, 2015 and December 31, 2017.The site is located in qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421, 38.0142N and 4148 m above sea level.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlator is 10Hz, and the published data are the 30-minute data processed by Eddypro. The main steps of the processing include: elimination of outliers, correction of delay time, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min flux value output by Eddypro software was also screened :(1) to eliminate the data in case of instrument error;(2) data of 1h before and after precipitation were removed;(3) data with a miss rate of more than 10% per 30min in 10Hz original data were excluded;(4) observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average period of observation data was 30 minutes, with 48 data in a day, and the missing data was marked as -6999.Suspect data caused by instrument drift and other reasons are marked in red font.The eddy current correlator will be short of power at night in winter, which leads to the loss of data.When 10Hz data is missing due to the storage card data problem (1.12-3.14,10.7-12.31), the data is replaced by the 30min flux data output by the collector. The published observations include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Mass identification of co2 flux.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, for example, 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
This data set contains the eddy correlation observation data of arou super station upstream of heihe hydrological and meteorological observation network on January 1, 2015 and December 31, 2017.Site is located in qilian county, qinghai province, arou township grass daban village, the underlying surface is alpine grassland.The longitude and latitude of the observation point are 100.4643E, 38.0473N, and the altitude is 3033m.The height of the vortex correlative instrument is 3.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of the vortex correlator is 10Hz, and the published data are the 30-minute data processed by Eddypro. The main steps of the processing include: elimination of outliers, correction of delay time, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min flux value output by Eddypro software was also screened :(1) to eliminate the data in case of instrument error;(2) data of 1h before and after precipitation were removed;(3) data with a miss rate of more than 10% per 30min in 10Hz original data were excluded;(4) observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average period of observation data was 30 minutes, with 48 data in a day, and the missing data was marked as -6999.Suspicious data caused by instrument drift and other reasons are marked with red font. Among them, calibration data of vortex system Li7500A on April 16-17 is missing.When the memory card fails to store data, resulting in the loss of 10Hz data (9.20-10.21,11.3-11.18), the data is replaced by the 30min flux data output by the collector. The published observations include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Mass identification of co2 flux.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, for example, 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).
CHE Tao, LIU Shaomin, LI Xin, XU Ziwei, ZHANG Yang, TAN Junlei
The Tibetan Plateau (TP), acting as a large elevated land surface and atmospheric heat source during spring and summer, has a substantial impact on regional and global weather and climate. To explore the multi-scale temporal variation in the thermal forcing effect of the TP,The data set of atmospheric heat source/sink in Tibetan Plateau was prepared as a quantitative analysis tool for calculating heat budget of gas column. the atmospheric heat source/sink dataset consists of three variables: surface sensible heat flux SH, latent heat release LH and net radiation flux RC. here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80 (32) meteorological stations during the period 1979–2016:air temperature at 1.5 m and surface temperature and wind speed at 10 m are used to calculate surface sensible heat flux,the latent heat release is estimated precipitation data.The satellite datasets used to calculate the net radiation flux were the Global Energy and Water Cycle Experiment surface radiation budget satellite radiation(GEWEX/SRB) and Clouds and Earth’s Radiant Energy Systems/Energy Balanced And Filled (CERES/EBAF). The monthly shortwave and longwave radiation fluxes at the surface and at the top of the atmosphere (TOA) in GEWEX/SRB and CERES/EBAF were utilized to obtain the net radiation flux for the period 1984–2015 via statistical methods。
DUAN Anmin
This data set contains the observation data of 10 m tower eddy covariance instrument from January 1, 2017 to December 31, 2017. The site is located in donghuayuan Town, Huailai County, Hebei Province. The longitude and latitude of the observation point are 115.7880e, 40.3491n and 480m above sea level. The acquisition frequency of the eddy correlator is 10Hz, the height of the frame is 5m, the ultrasonic direction is due north, and the distance between the ultrasonic anemometer (csat3) and the CO2 / H2O analyzer (li7500a) is 15cm. The released data is 30 minutes data obtained by post-processing the original collected 10Hz data by eddypro software. The main processing steps include: outlier value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction. At the same time, the quality evaluation of each flux value is mainly the test of atmospheric stability (Δ st) and turbulence similarity characteristics (ITC). The 30 min flux values output after processing were also screened: (1) the data of instrument error; (2) the data of 1 h before and after precipitation; (3) the data of 10 Hz original data missing more than 10% every 30 min; (4) the observation data of weak turbulence at night (U * less than 0.1 M / s) were eliminated. The average period of observation data is 30 minutes. There are 48 data in a day, and the missing data is marked as - 6999. From May 27 to July 22, the data was missing due to problems with the ultrasonic anemometer. The observational data released by eddy correlator include date / time, wind direction WDIR (°), horizontal wind speed wnd (M / s) and standard deviation of lateral wind speed STD_ Uy (M / s), ultrasonic virtual temperature TV (k), water vapor density H2O (g / m3), carbon dioxide concentration CO2 (mg / m3), friction velocity ustar (M / s), obuhof length, sensible heat flux HS (w / m2), latent heat flux Le (w / M2), carbon dioxide flux FC (mg / (M2S)), quality identification of sensible heat flux QA_ HS, quality identification of latent heat flux QA_ LE。 The quality identification of sensible heat, latent heat and carbon dioxide flux can be divided into three levels (quality mark 0: (Δ st < 30, ITC < 30); 1: (Δ st < 100, ITC < 100); the rest are 2). The meaning of data time, for example, 0:30 represents the average of 0:00-0:30; the data is stored in *. XLS format. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing
LIU Shaomin, XU Ziwei
The data set contains the observation data of 40m tower vortex correlator on January 1, 2017, solstice, 2017, December 31, 2017.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7923E, 40.3574N, and the altitude is 480m.The acquisition frequency of vortex correlativity instrument is 10Hz, the frame height is 3.5m, the ultrasonic direction is due to the north, and the distance between the ultrasonic anemometer (CSAT3) and the CO2/H2O analyzer (EC150) is 0cm. The released data is the 30-minute data obtained from the post-processing of the original collected 10Hz data with Eddypro software. The main steps of the processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output after processing was also screened :(1) the data when the instrument was wrong was removed;(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.There are many negative values of water vapor density measured by EC150 in winter, filled with -6999. The observation data released by vortex correlator include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (K), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), the length of cloth hoff, sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format.The data was missing during the period from May 26 to May 29 due to instrument calibration. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing.
LIU Shaomin, XU Ziwei, XIAO Qing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn