The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
The 0.1 º aerosol optical thickness dataset (also known as the "Poles AOD Collection 1.0" aerosol optical thickness (AOD) dataset) in the polar regions from 2000 to 2020 was produced by combining Merra-2 mode data and MODIS satellite sensor AOD. The data covers the period from 2000 to 2020, with a daily time resolution, covering the "tri polar" (Antarctic, Arctic and Qinghai Tibet Plateau) region, and a spatial resolution of 0.1 degree. The verification of the measured stations shows that the relative deviation of the data is within 35%, which can effectively improve the coverage and accuracy of AOD in the polar region.
GUANG Jie GUANG Jie
The surface PM2.5 concentration data of Tibet Plateau is named by date (YYYYMMDD). Each NC file contains one day's data, which is composed of PM2.5 concentration, longitude, latitude, and time information of the area (the corresponding variables in the data are named with PM2.5, lon, lat, time). The data inversion relies on the reanalysis data MERRA-2 released by NASA and the AOD product of Multi-angle Imaging SpectroRadiometer (MISR). MERRA-2 is mainly based on NASA GMAO Earth system model version 5 (GEOS 5). The algorithm is able to assimilate all the in-situ and re- motely-sensed atmospheric data. This dataset mainly focuses on the aerosol field of MERRA-2. This is the first multi-decadal reanalysis within which meteorological and aerosol observations are jointly assimilated into a global assimilation system. MISR views Earth with cameras pointed in 9 different directions, which can help us know the amount of sunlight that is scattered in different directions under natural conditions. The main data products used in this data algorithm are MERRA-2 aerosol analysis product (M2T1NXAER) and MISR Level 3 version 4 global aerosol products (MIL3DAEN_4). Firstly, the ratio of PM2.5 to AOD in each grid was calculated by using the aerosol information provided by MERRA-2. Second, the PM2.5 concentration of the grid was calculated by multiplying the AOD of MISR by the ratio. The mean prediction error of PM2.5 concentration obtained by this method is within 20 μg/m3. The corresponding PM2.5 products can be used for the assessment of particulate pollution in the Tibet Plateau.
FU Disong
Atmospheric water vapor is an important parameter for studying the water cycle. In the context of global warming, in order to better study the impact of atmospheric water vapor on the water cycle, a global daily scale AMSR-E/AMSR2 all-weather atmospheric precipitable water (TPW) dataset with a spatial resolution of 0.25 ° was constructed. In the data set, the TPW over land is mainly obtained by our newly developed 18.7 and 23.8 GHz brightness temperature data inversion algorithm based on AMSR-E and AMSR2; The ocean sky TPW data integrates AMSR-E/AMSR2 official TPW products. As a post-processing, in order to eliminate the systematic deviation between AMSR-E TPW and AMSR2 TPW, using AIRX2RET TPW as the benchmark, the histogram matching method was used to correct the systematic deviation of AMSR-E and AMSR2 TPW data on a global scale, to ensure the continuity of the data, and finally the global daily scale AMSR-E and AMSR2 TPW all-weather data sets were obtained. Among them, the time range of AMSR-E data is from July 8, 2002 to September 27, 2011, and the time range of AMSR-2 data is from January 1, 2013 to August 31, 2017. Each date contains two files: orbit raising and orbit lowering. The data format is Geotiff. The number of data layers is 2. The first layer is TPW data, with the unit of mm. The second layer is time information, which represents the number of seconds elapsed between the pixel observation time with UTC as the time base and 0:00:00 of the current day. The data set has reliable quality. Through verification and analysis with the global SuomiNET GPS TPW, the root mean square error of the data set is 3.5-5.2mm. As atmospheric precipitable water is an important geophysical parameter affecting surface remote sensing and also has an important impact on the earth's climate change, this data can be used for research on the impact of atmospheric water vapor on the water cycle, the assessment of atmospheric water resources and atmospheric correction in the context of climate warming.
JI Dabin, SHI Jiancheng, HUSI Letu, LI Wei , ZHANG Hongxing , SHANG Huazhe
Clouds cover 70% of the earth's surface and are one of the important factors affecting the balance of atmospheric radiation and climate change. They are also an important part of the global water cycle. Considering the lack of reliable cloud parameter data with high temporal and spatial resolutions in the East Asia-Pacific (EAP) region, the 2016 data were developed using the next-generation geostationary satellite Himawari-8 with a temporal resolution of 1h and spatial resolutions of 0.1° and 0.25°. , 1° cloud parameters datasets. The cloud products include macro- and micro parameters. The macro parameters include: cloud cover (CF), cloud detection (CM), cloud phase detection (CP), cloud top pressure (CTP), cloud top height (CTH) ), cloud top temperature (CTT), cloud type (CT), supercooled water detection (SWC); micro parameters include cloud optical depth (COT), cloud particle effective radius (CER). These cloud parameters produced have reached the international advanced level in terms of precision.
HUSI Letu
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
Aerosol Optical Depth (AOD) reflects the attenuation of solar radiation to the surface by aerosols. The aerosol type is calculated according to the aerosol optical thickness (AOD). This data set is derived from the latest MODIS aerosol secondary product MOD04_ L2 and MYD04_ L2, where MOD and MYD represent Terra and Aqua satellites respectively. At present, MODIS aerosol retrieval algorithms are Dark Target (DT) and Deep Blue (DB). According to the inversion accuracy of the metadata field table Quality Assurance Confidence (QAC), DT and DB algorithm products are integrated to deal with land, ocean and coast respectively. The index quality is optimal (QAF=3) or suboptimal (QAF=2) or meets the basic needs (QAF=1) to obtain high-resolution AOD products (0.1 degree, daily scale) with full coverage and long time series. According to AOD experience threshold (AOD: 0~0.2, clean type; 0.2~0.6, urban or industrial type; greater than 0.6, sand dust type) The aerosol types are classified into three types: clean type (1), urban or industrial type (2) and sand dust type (3). This dataset provides MOD, MYD and fusion products based on transit time.
YE Aizhong
A global continental blended high-resolution planetary boundary layer height (PBLH) dataset is generated with machine learning algorithms, covering a time period from 2017 to 2021 with a 3-hour and 0.25º resolution in space and time. The radiosonde dataset contains around 180 million profiles over 370 stations across the world. The machine learning model was established by taking the parameters derived from ERA5 reanalysis and GLDAS as input while PBLH determined from radiosonde measurements was used as the learning target. Once a start-of-the-art model has been eventually trained, the model was then used to predict PBLHs at other grids across the globe with parameters acuqired or derived from ERA5 and GLDAS, including PBLH, lower tropospheric stability, near-surface wind speed and standard deviation of orography extracted from ERA5 reanalysis, sensible heat flux, latent heat flux, transpiration, evapotranspiration, downward long wave radiation, downward short wave radiation, total precipitation rate and near-surface pressure from GLDAS. Overall, this harmonized high-resolution PBLH dataset is outstanding in terms of both spatiotemporal coverage and good accuracy, as compared to the PBLHs retrieved from radiosonde.
GUO Jianping , ZHANG Jian , SHAO Jia
This data set contains the high-resolution tropospheric nitrogen dioxide vertical column concentration pomino v2.0.1 data in East Asia from 2004 to 2020, which provides an important data basis for studying the spatial distribution characteristics and temporal variation trend of tropospheric nitrogen dioxide in China. Based on the tropospheric nitrogen dioxide slant column concentration provided by KNMI, the pomino tropospheric nitrogen dioxide vertical column concentration is calculated through the tropospheric AMF retrieval algorithm developed by ourselves. The comparison with the ground-based observation data shows that the tropospheric nitrogen dioxide column concentration of pomino can better capture the day-to-day variation trend, and has better correlation with the ground-based observation data. At present, the data has been used for scientific research by many universities and scientific research institutions at home and abroad. In the future, the data set will provide more comprehensive data support for scientific research projects on the Qinghai Tibet Plateau.
LIN Jintai
This data set contains the high-resolution tropospheric nitrogen dioxide vertical column concentration pomino v2.1 data in East Asia from 2012 to 2020. It is a new version of the data after bug fix of v2.0.1, which provides an important data basis for studying the spatial distribution characteristics and temporal change trend of tropospheric nitrogen dioxide in China. Based on the tropospheric nitrogen dioxide slant column concentration provided by KNMI, the pomino tropospheric nitrogen dioxide vertical column concentration is calculated through the tropospheric AMF retrieval algorithm developed by ourselves. The comparison with the ground-based observation data shows that the tropospheric nitrogen dioxide column concentration of pomino can better capture the day-to-day variation trend, and has better correlation with the ground-based observation data. At present, the data has been used for scientific research by many universities and scientific research institutions at home and abroad. In the future, the data set will provide more comprehensive data support for scientific research projects on the Qinghai Tibet Plateau.
LIN Jintai
This dataset contains the monthly/yearly surface shortwave band albedo, fraction of absorbed photosynthetically active radiation (fPAR), leaf area index (LAI), vegetation continuous fields (tree cover and non-tree vegetation cover, VCF), land surface temperature (LST), net radiation (RN), evapotranspiration (ET), aboveground autotrophic respiration (RA-ag), belowground autotrophic respiration (RA-bg), gross primary production (GPP) and net primary production (NPP) in China from 2001 to 2018. The spatial resolution are 0.1 degree. Moreover, the dataset also includes these 11 ecosystem variables under climate-driven scenario (i.e., under no human disturbance). So, it can show the relative influences of climate change and human activities on land ecosystem in China during the 21st century.
CHEN Yongzhe, FENG Xiaoming, TIAN Hanqin, WU Xutong, GAO Zhen, FENG Yu, PIAO Shilong, LV Nan, PAN Naiqing, FU Bojie
Kilometer-level spatially complete (seamless) land surface temperature products have a wide range of applications needs in climate change and other fields. Satellite retrieved LST has high reliability. Integrating the LST retrieved from thermal infrared and microwave remote sensing observation is an effective way to obtain the SLT with certain accuracy and spatial integrity. Based on this guiding ideology, the author developed a framework for retrieving 1km and seamless LST over China landmass, and generated the LST data set accordingly (2002-2020) Firstly, a look-up table based empirical retrieval algorithm is developed for retrieving microwave LST from AMSR-E/AMSR2 observations. Then, AMSR-E/AMSR2 LST is downscaled by using geographic weighted regression to obtain 1km LST. Finally, the multi-scale Kalman filter is used to fuse AMSR-E/AMSR2 LST and MODIS LST to generate a 1km seamless LST data set. The ground valuation results show that the root mean square error (RMSE) of the 1km seamless LST is about 3K. In addition, the spatial distribution of the 1km seamless LST is consistent with MODIS LST and CLDAS LST.
CHENG Jie, DONG Shengyue, SHI Jiancheng
Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
Data content: surface temperature data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: the first band of mod11a2 product was extracted from the NASA medium resolution imaging spectrometer as the surface temperature data, multiplied by the scale factor of 0.02. Data quality: the spatial resolution is 1000m × 1000m, the temporal resolution is 8 days, and the value of each pixel is the average value of land surface temperature in 8 days. Data application results: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics, and can also be combined with other meteorological data to analyze the regional distribution of a certain vegetation type.
LIU Tie
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
CHEN Xuelong, BOB Su, MA Yaoming
This data set is a national high-resolution solar radiation data set covering 34 years (1983.7-2017.6), with a resolution of 10 km. The data unit is W / m2. The data set is developed by merging the global high-resolution (3 hours, 10 km) surface solar radiation data set (1983-2017) with isccp-hxg cloud products as the main input, with ground based sunshine duration derived surface solar raidation data from 2261 meteorological stations in China by using the geographic weighted regression method. The validation results show that this dataset can provide more accurate simulation of long-term variability of surface solar radiation than that of gewex-srb, cmsaf-clara-a2 and the isccp-hxg based surface solar radiation product. This data can provide favorable data support for the application and research of long-term change of hydrology in land surface process simulation.
FENG Fei, WANG Kaicun
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
MAO Kebiao
The Land Surface Temperature in China dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
MAO Kebiao
Vulnerability assessment dataset of hectometre level for 34 key nodes assessment the flood risk of key nodes in the Belt and Road under the extreme precipitation events, in order to provide basis for decision-making for the local government department, at the same time before flood disaster early warning, which may take the disaster prevention and mitigation measures for the precious time, reduce people's lives and property damage brought by the flood. Based on the data of GDP, population, land ues, road density and river density in the Belt and Road, this dataset combined with the methods of spatial analysis of ArcGIS, assigning different weights to each indicator and building assessment 34 key nodes under the condition of extreme precipitation in flood vulnerability level, which was divided into 5 levels by using natural break point method, representing no vulnerability, low vulnerability, middle vulnerability, high vulnerability, extreme high vulnerability, respectively.
GE Yong, LI Qiangzi, LI Yi
The pan third pole historical extreme precipitation data set includes 2000-2018 extreme precipitation identification data. One belt, one road, was used to assess the rainfall in the important area along the GPM IMERG Final Run (GPM) daily rainfall. The extreme precipitation threshold of 34 important nodes was evaluated by percentile method. The daily precipitation period was identified by the calculated threshold, and the surface inundation area was produced on the basis of extreme precipitation. The data range mainly includes 34 key nodes of Pan third pole (Vientiane, Alexandria, Yangon, Calcutta, Warsaw, Karachi, yekajerinburg, Chittagong, Djibouti, etc.) The data set can provide the basis for local government decision-making, so as to correctly identify extreme precipitation and reduce the loss of life and property caused by extreme precipitation.
HE Yufeng
Land surface temperature is a critical parameter in land surface energy balance. This dataset provides the monthly land surface temperature of UAV remote sensing for typical ground stations in the middle reaches of Heihe River basin from July to September in 2019. The land surface temperature retrieval algorithm is an improved single-channel algorithm, which was applied to the land surface brightness temperature data obtained by the UAV thermal infrared remote sensing sensor, and finally the land surface temperature data with a spatial resolution of 0.4m was obtained.
ZHOU Ji, LIU Shaomin, WANG Ziwei
Vulnerability refers to a property of the system that is susceptible to changes in structure and function due to the system's sensitivity to internal and external disturbances and its lack of ability to respond, that is, the ability of the region to cope with disasters to reduce losses when heat waves occur. This dataset is based on the pan-third pole regional road network data, GDP data, medical facility spatial distribution data, vegetation coverage data, and water distribution data as basic data,and takes 2015 as the base year. The Euclidean Metric calculation method is adopted to determine the spatial distribution of road networks, water and medical facilities in the area. The distance from roads, water bodies, medical facilities, GDP, and vegetation coverage are used as evaluation indicators. The equal-weight overlapping addition is used to evaluate the vulnerability of heat waves at each node. In order to eliminate the impact of unit differences, the data of each index layer is normalized before the evaluation.Finally, the vulnerability level of each node is divided by the natural Jenks method.
GE Yong, YANG Fei, LIU Qingsheng
The data comes from the National Centers for environmental information (NCEI), which provides meteorological records of all stations in the world since they were built, including temperature, wind speed, dew point, precipitation and other information. There are four recorded stations near Dhaka city. The monitoring data of meteorological stations have the characteristics of high precision. Firstly, the monitoring data of stations in the world are downloaded from NCEI, and then four stations in Dhaka city are selected according to longitude and latitude. The data level records the daily meteorological station monitoring data from January 1, 2016 to December 31, 2019.
GE Yong, YANG Fei
Based on 2015 as the base year, this data set selects population density, distribution of high-risk population and GDP as the evaluation indicators to complete the assessment of high temperature heat wave exposure at 34 key nodes. Exposure refers to the degree that a certain area may be affected by the disaster when the disaster occurs. In the extreme high temperature, human and economy are the two most obvious factors affected by the high temperature heat wave. The high-risk population is defined as children younger than five years old and the elderly older than 65 years old respectively. Equal weight overlapping plus method is adopted in the assessment. In order to eliminate the influence of unit difference, the data of each indicator layer is normalized before the assessment. The spatial resolution of the assessment result is 100m, covering 34 key nodes of the third pole.
GE Yong, YANG Fei, LIU Qingsheng
Based on the world surface water data (wod) from 1984 to 2018, this data set selects several indexes of precipitation, topography and land use type, and combines with the spatial analysis method in ArcGIS, constructs and evaluates the risk level of flood disaster in 34 key nodes under extreme precipitation conditions. One belt, one road, 34 critical nodes, is evaluated for the risk of flooding in the key areas along the extreme precipitation events. It provides a basis for local government departments to make decisions and early warning before the flood. Thus, we can gain valuable time to take measures to prevent and reduce disasters, and to reduce people's lives and property losses caused by floods. Loss.
GE Yong, LI Qiangzi, LI Yi
Data set of surface inundation caused by historical extreme precipitation evaluated the surface inundation range of One Belt And One Road key areas under extreme precipitation, providing a basis and reference for the decision-making of local government departments, so as to give early warning before the occurrence of extreme precipitation and reduce the loss of life and property caused by extreme precipitation.This data set to the extreme precipitation threshold set "and" the extreme precipitation recognition "as the foundation, to confirm the extreme precipitation time node and the area, and then to NASA's web site to download the submerged range products corresponding to the time and region, combining ArcGIS spatial analysis was used to connect the above data, build the data sets of historical extreme precipitation caused surface submerged range for 34 key nodes. The data mainly includes 34 key nodes (Vientiane, China-Myanmar oil and gas pipeline, China-Laos Thai-Cambodia railway, Alexandria, Yangon, Kwantan, Kolkata, Warsaw, Karachi, Yekaterinburg, Yekaterinburg and other regions).
WU Hua
Apparent temperature refers to the degree of heat and cold that the human body feels, which is affected by temperature, wind speed and humidity. The spatial scope of the data covers 34 key nodes in the pan-third pole region (Vientiane, Yangon, Kolkata, Warsaw, Karachi, Yekaterinburg, Chittagong, Tashkent, etc.). The spatial resolution is 100m, and the temporal resolution is year. Processing process: Based on the monitoring data of the meteorological station, calculate the apperant temperature based on the Humidex index, and then use the temperature correction method based on elevation correction to obtain 1km gridded data of the entire area, and downscale it to 100m. The heat wave risk dataset mainly uses intensity as the evaluation index. The spatial range and spatial resolution are consistent with the somatosensory temperature data set, and the temporal resolution is years. The criterion for judging the heat wave is: the weather process in which the somatosensory temperature exceeds 29℃ for three consecutive days is judged to be a high-temperature heat wave.
YANG Fei, WU Xilin, YIN Cong
The data source of this data set is the first, second and third bands of the atmospheric top layer reflectance data of Landsat-5 satellite. Landsat satellite is a sun synchronous satellite. The satellite moves from north to south. The earth rotates from west to East. The satellite circles the earth 14.5 times a day. Each circle moves 159km to the west of the equator. It covers every 16 days repeatedly. This data set mainly covers Dhaka City, Bangladesh. Based on the top layer reflectance data of Landsat-5 atmosphere in 2010, this data is downloaded from the geospatial data cloud platform, and uses ArcGIS to synthesize the data band. Finally, the 30 meter resolution multispectral remote sensing image data of Dhaka area 2010 in TIFF format is obtained.
GE Yong, YANG Fei
Based on 100m risk assessment data set and 100m vulnerability assessment data set, this data set respectively gives different weights to the risk and vulnerability (the risk weight is 0.8, and the vulnerability weight is 0.2), and 34 key node 100m risk assessment data sets are obtained by adding. One belt, one road area, is evaluated for flood risk in extreme areas. The data provide basis for local government departments to make decisions, and early warning before flood disasters, so that we can gain valuable time to take measures to prevent and reduce disasters, and to reduce the loss of lives and property of people caused by floods.
GE Yong, LI Qiangzi, LI Yi
This dataset is land surface phenology estimated from 16 days composite MODIS NDVI product (MOD13Q1 collection6) in the Three-River-Source National Park from 2001 to 2020. The spatial resolution is 250m. The variables include Start of Season (SOS) and End of Season (EOS). Two phenology estimating methods were used to MOD13Q1, polynomial fitting based threshold method and double logistic function based inflection method. There are 4 folders in the dataset. CJYYQ_phen is data folder for source region of the Yangtze River in the national park. HHYYQ_phen is data folder for source region of Yellow River in the national park. LCJYYQ_phen is data folder for source region of Lancang River in the national park. SJY_phen is data folder for the whole Three-River-Source region. Data format is geotif. Arcmap or Python+GDAL are recommended to open and process the data.
WANG Xufeng
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The data sources of this dataset are the first to seventh bands of the top-of-atmosphere (TOA) reflectance data of Landsat-5 and landsat-8 satellites. Landsat satellites are sun synchronous satellite with a repetition period of 16 days. Based on the data of Landsat-5 and landsat-8 TOA reflectance from 2000 to 2016, this dataset mainly covers the pan third polar key points region in Southeast Asia and the Middle East. It uses Google Earth engine cloud computing platform to clip the data of the study area, and finally gets the 30-meter resolution multi spectral remote sensing image data of the pan third polar region 2000-2016 in TIFF format.
GE Yong, LING Feng, ZHANG Yihang
The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2019-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.
HAO Xiaohua
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
This dataset mainly includes the spatial distribution of global SPEI in 1218 in 2018, the global drought intensity in 2018, and the anomalies of precipitation, land surface temperature, 0-10 cm soil moisture and the past 10 years (2009-2018); The flat index method, the maximum value synthesis method and the trend analysis method calculate the global drought intensity and the main meteorological factor anomaly data for 2018. The data time scale is 2018-01-01 to 2018-12-31, and the spatial resolution is 0.5 degree. The data can provide a scientific reference for the analysis of global drought distribution and drought assessment in 2018.
TIAN Feng, WU Jianjun, ZHOU Hongmin
The data set analyzes the spatial and temporal distribution, impact and loss of typical global flood disasters from 2018 to 2019. In 2018, there were 109 flood disasters in the world, with a death toll of 1995. The total number of people affected was 12.62 million. The direct economic loss was about 4.5 billion US dollars, which was at a low level in the past 30 years. The number of global flood incidents in 2018 was higher in the first half of the year than in the second half of the year, and the frequency of occurrence was higher from May to July. Therefore, based on three typical disaster events such as the hurricane flood in Florence in the United States in 2018, the flooding of the Niger River in Nigeria in 2018, and the Shouguang flood in Shandong Province in 2018, the disaster background, hazard factors, and disaster situation were analyzed. .
JIANG Zijie, JIANG Weiguo, WU Jianjun, ZHOU Hongmin
This dataset contains monthly and daily 0.01°×0.01° (2018) LST products in Qilian Mountain Area. The dataset was produced based on MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include Lat/Lon and the Julian Day information. MYD21A1 is the official LST product of MODIS, and the data is divided into day and night, using TES algorithm. Download URL: https://urs.earthdata.nasa.gov.
LI Hua
This dataset contains monthly 0.05°×0.05° (1982, 1985, 1990, 1995, and 2000), 0.01°×0.01° (2005, 2010, 2015, 2017 and 2018), and daily 0.01°×0.01° (2018) LST products in Qilian Mountain Area. The dataset was produced based on SW algorithm by AVHRR BT from thermal infrared channels (CH4: 10.5µm to 11.3µm; CH5: 11.5µm to 12.5µm) at a resolution of 0.05°, MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include IGBP land cover type, AVHRR NDVI products, Modern Era Retrospective-Analysis for Research and Applications-2 (MERRA-2) reanalysis data, ASTER GED, Lat/Lon and the Julian Day information.
LI Hua
This dataset includes the ground surface temperature in the Qilian Mountains on the Qinghai-Tibet Plateau during 1980-2013. This dataset was obtained from the ERA-interim reanalysis product. The ERA-interim system includes a 4-dimensional variational analysis (4D-Var). The quality of the data has been improved using the bias correction of satellite data. The spatial resolution of the dataset is 0.125°. The dataset includes the grid data of the ground surface temperature in the Qilian Mountains during the past 30 years, and may provide a basic data for relevant studies such as climatic change, ecosystem succession, and earth system models.
WU Xiaodong
The Qinghai Tibet Plateau belongs to the plateau mountain climate. The precipitation, its seasonal distribution and the change of precipitation forms have been one of the hot spots in the global climate change research. The data includes precipitation data of Qinghai Tibet Plateau, with spatial resolution of 1km * 1km, temporal resolution of month and year, and time coverage of 2000, 2005, 2010 and 2015. The data are obtained by Kring interpolation of meteorological data of National Meteorological Science Information Center. The data can be used to analyze the temporal and spatial distribution of precipitation over the Qinghai Tibet Plateau. In addition, the data can also be used to analyze the temporal and spatial variation of precipitation over the Qinghai Tibet Plateau, which is of great significance to the study of the ecological environment of the Qinghai Tibet Plateau.
FANG Huajun
Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.
FANG Huajun, Ranga Myneni
The data set of ERA-Interim global surface air temperature reanalysis (1979-2016) was obtained from the European Center for Medium-Range Weather Forecasts (ECMWF) by adopting the ECMWF IFS forecasting system (T255, 60 layers) and using the four-dimensional variational assimilation system (8DVAR) with an analysis window of 12 hours to assimilate satellite remote sensing data (TOVS, GOES, Meteosat, etc.) and regular observations of the surface and upper atmosphere in different regions of the world and from different sources. The surface air temperature (2 m air temperature) data span the time range from January 1979 to December 2016 and cover the whole world with the projection of equal latitude and longitude, a temporal resolution of six hours, and a horizontal resolution of 0.75. The data were stored as a NetCDF format file once a month and included longitude, latitude, time, and temperature (t2m, unit: K), with 241 latitudinal grid points and 480 longitudinal grid points.
LI Fei
This data set of cloud observations at a site in Arctic Alaska is based on the fusion of five cloud inversion products that are well known worldwide. The temporal coverage of the data is from 1999 to 2009, the temporal resolution is one hour, and there are 512 layers vertically with a vertical resolution of 45 m. The spatial coverage is one site in Arctic Alaska, with latitude and longitude coordinates of 71°19′22.8′′N, 156°36′32.4′′ W. The remote sensing cloud inversion data products include the following official products: the all-phase cloud characteristic products produced by the Atmospheric Radiation Measurement Program of the US Department of Energy adopting a parametric method for remote sensing inversion, the ice cloud and hybrid cloud feature products obtained from the US NOAA researchers Matt Shupe and Dave Turner based on cooperative remote sensing inversion (optimization method + parametric method), the hybrid cloud feature (optimization method) products produced by Zhien Wang of the University of Wyoming, USA, the ice cloud feature (parametric method) products produced by Min Deng of the University of Wyoming, USA, and the cloud optical thickness products produced by Qilong Min of the State University of New York at Albany adopting remote sensing inversion (optimization method). The variables of the remote sensing products include cloud water effective radius, cloud water content, cloud ice effective radius, cloud ice content, cloud optical thickness, and cloud water column content; the corresponding observed inversion error ranges are approximately 10-30%, 30-60%, 10-30%, 30-60%, 10-30% and 10-20%. The data files are in the NC format, and an NC file is stored every month.
ZHAO Chuanfeng
This is China's high temporal and spatial resolution surface solar radiation data set from 2007-2014. The time resolution is hourly, and the spatial resolution is 5 km. Each hour corresponds to a file named RAD_yyyymmddhh.dat, where yyyy represents the year, mm represents the month, dd represents the day, and hh represents the hour (world time). Longitude (X-axis) grid: 70.025:0.05:140.025, latitude (Y-axis) grid: 59.975:-0.05:14.975. The file is a binary file, in the format of float (real*4), with no header file. There are three steps to acquire this data set: (1) integrating polar-orbiting satellite MODIS and Japanese geostationary meteorological satellite MTSAT data and developing a cloud detection algorithm suitable for MTSAT and an estimation method for MTSAT cloud attribute information (effective particle radius and path water content); (2) developing a broad-band radiation model with cloud attribute, aerosol, water vapor, ozone and other inputs to form an efficient and rapid surface solar radiation inversion technique; and (3) inputting the acquired high-resolution cloud parameter information and other elements such as aerosol, water vapor, and ozone into the broad band radiation transmission model, finally obtaining the high temporal and spatial resolution surface solar radiation data set of China. It has been verified that the instantaneous root mean square error (RMSE) is generally less than 100 W•m-2, and the daily mean root mean square error (RMSE) is generally less than 35 W•m-2.
TANG Wenjun
This data set was derived from MODIS version 005 and the IMS data set. It is a daily cloudless snow area product processed by cloud removal. Value range: 0%-100%. 200: snow; 100: lake ice; 25: land; 37: sea. The spatial resolution is 0.005 degrees (approximately 500 m), and the temporal coverage is from July 5, 2002, to December 31, 2014.
HAO Xiaohua
Daily and Monthly evapotranspiration (5km x 5km spatial resolution) for global land area was derived from satellite data and a surface energy balance method (EB). The global 5 km daily and monthly ET dataset is produced with the revised SEBS algorithm in Chen et al. 2019 JGR and Chen et al. 2013 (JAMC). For how to obtain seamless daily evaporation data by thermal infrared, please refer to Chen et al. 2021 JGR. This paper also compares different evaporation products. The results show that this product is significantly better than Landflux, GLEAM, MOD16, GLDAS and ERA-Interim products in irrigation area. The downscaling of reanalysis forcing data is detailed in this paper. MODIS LST, NDVI, Global forest height, GlobAlbedo, GLASS LAI have been used in this ET calculation. The ET dataset will be updated to near-present with the availability of input dataset. The global 5 km sensible heat flux, net radiation, latent heat flux will be open with the email contact with Dr. Xuelong Chen. Daily ET File name: 20001201-ET-V1.mat, 2000-year, 12-month,01-day, ET-Evapotranspiration, V1-version 1;unit: mm/day (unit8 need transfer to single or double and should be divided by 10);data type: unit8 was used to save the disk space, 255 is used for ocean and water body pixels. Monthly ET File name: ETm200012-ET-V1.mat, 2000-year, 12-month, ET-Evapotranspiration, V1-version 1;unit: mm/month (int16 need transfer to single or double and should be divided by 10);data type: int16 was used to save the disk space, 0 is used for ocean and water body pixels. The daily ET dataset is produced with a similar method and satellite data as in Chen, X., et al., 2014: Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys., 14, 13097–13117, doi:10.5194/acp-14-13097-2014. The calculation of roughness length and kB_1 for global land were updated by the method in Chen, X., et al, 2019, A Column Canopy‐Air Turbulent Diffusion Method for Different Canopy Structures, Journal of Geophysical Research: Atmospheres, 2019.01.15, 124. Most of the satellite input data were from MODIS. Meteorological data was from ERA-Interim. Global canopy height information was derived from GLAS and MODIS NDVI. The daily ET has a mean bias (MB) of 0.04 mm/day, RMSE is 1.56 (±0.25) mm/day.
CHEN Xuelong
The meteorological elements distribution map of the plateau, which is based on the data from the Tibetan Plateau National Weather Station, was generated by PRISM model interpolation. It includes temperature and precipitation. Monthly average temperature distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 Monthly average temperature distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, Precipitation distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 Precipitation distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): p1991-20_1.e00,p1991-20_2.e00,p1991-20_3.e00,p1991-20_4.e00,p1991-20_5.e00, p1991-20_6.e00,p1991-20_7.e00,p1991-20_8.e00,p1991-20_9.e00,p1991-20_10.e00, p1991-20_11.e00,p1991-20_12.e00, The temporal coverage of the data is from 1961 to 1990 and from 1991 to 2020. The spatial coverage of the data is 73°~104.95° east longitude, 26.5°~44.95° north latitude, and the spatial resolution is 0.05 degrees×0.05 degrees (longitude×latitude), and it uses the geodetic coordinate projection. Name interpretation: Monthly average temperature: The average value of daily average temperature in a month. Monthly precipitation: The total precipitation in a month. Dimensions: The file format of the data is E00, and the DN value is the average value of monthly average temperature (×0.01°C) and the average monthly precipitation (×0.01 mm) from January to December. Data type: integer Data accuracy: 0.05 degrees × 0.05 degrees (longitude × latitude). The original sources of these data are two data sets of 1) monthly mean temperature and monthly precipitation observation data from 128 stations on the Tibetan Plateau and the surrounding areas from the establishing times of the stations to 2000 and 2) HadRM3 regional climate scenario simulation data of 50×50 km grids on the Tibetan Plateau, that is, the monthly average temperature and monthly precipitation simulation values from 1991 to 2020. From 1961 to 1990, the PRISM (Parameter elevation Regressions on Independent Slopes Model) interpolation method was used to generate grid data, and the interpolation model was adjusted and verified based on the site data. From 1991 to 2020, the regional climate scenario simulation data were downscaled to generate grid data by the terrain trend surface interpolation method. Part of the source data came from the results of the GCM model simulation; the GCM model used the Hadley Centre climate model HadCM2-SUL. a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. The spatial interpolation of meteorological data adopted the PRISM (Parameter-elevation Regressions on Independent Slopes Model) method: Daly, C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. Due to the difficult observational conditions in the plateau area and the lack of basic research data, there were deletions of meteorological data in some areas. After adjustment and verification, the accuracy of the data was only good enough to be used as a reference for macroscale climate research. The average relative error rate of the monthly average temperature distribution of the Tibetan Plateau from 1961 to 1990 was 8.9%, and that from 1991 to 2020 was 9.7%. The average relative error rate of precipitation data on the Tibetan Plateau from 1961 to 1990 was 20.9%, and that from 1991 to 2020 was 22.7%. The area of missing data was interpolated, and the values of obvious errors were corrected.
ZHOU Caiping
NCEP/NCAR Reanalysis 1 is an assimilation of data from the past (1948-recent). It was developed by the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP–NCAR) in the US to act as an advanced analysis and prediction system. Most of the data are from the original daily average data of the PSD (Physical Sciences Division). However, the data from 1948 to 1957 are slightly different because these data are conventional (non-Gaussian) grid data. The information published on the official website is generally from 1948 to the present, and the latest information is generally updated every two days. For data on an isostatic surface, the general vertical resolution is 17 layers, from 1000 hPa to 10 hPa. The horizontal resolution is typically 2.5° x 2.5°. The NCEP reanalysis data are systematically comparable among international atmospheric science reanalysis data sets. Compared with the reanalysis data of the European Center, the initial year is earlier, and the latest data updates are more frequent. These two sets of reanalysis data are currently the most widely used data sets in the world. For details of the data, please visit the following website: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
LUO Dehai, YAO Yao
This dataset contains the flux measurements from the Subalpine shrub eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from April 28 to December 31 in 2019. The site (100°6'3.62"E, 37°31'15.67" N ) was located near Dasi, Shaliuhe Town, Gangcha County, Qinghai Province. The elevation is 3495m. The EC was installed at a height of 2.5m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
ZHAO Chuanfeng
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
QIU Yubao
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is from 1998 to 2016, and the time resolution is hour by hour. The coverage site is the Arctic Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The optical characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format.
ZHAO Chuanfeng
This data set contains the surface temperature and surface emissivity products retrieved from 12 ASTER data in the middle reaches of Heihe River Basin in 2012. The 12 scenes ASTER data all cover the ecological and hydrological experimental area of the middle reaches artificial oasis. The acquisition time (Beijing time) is: 2012-05-302012-06-152012-06-242012-07-102012-08-02, 2012-08-112012-08-182012-08-272012-09-03, 2012-09-122012-09-192012-09-28. The transit time of the above data is around 12:15 (Beijing time). Firstly, the L1B data is corrected by aster L3 data, and then the L1B data is corrected by MODIS mod07 atmospheric profile product with the same transit time and the atmospheric radiation transfer model MODTRAN. In order to improve the accuracy of atmospheric correction, the water vapor scaling (WVS) atmospheric correction method is used. Finally, the aster temperature emissivity separation (TES) algorithm is used to retrieve the surface temperature and the surface emissivity of five bands. The results show that the average deviation of surface temperature products is less than 0.5K and RMSE is less than 2K. This data set can provide reliable input data for remote sensing estimation of key water and heat variables of heterogeneous surface.
LI Hua, WANG Heshun
On 4 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in Linze region and Heihe riverway. The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.
XIAO Qing, Wen Jianguang
On 30 June 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.
XIAO Qing, Wen Jianguang
On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.
XIAO Qing, Wen Jianguang
Images: MODIS images Preparation method: Tsinghua redraw remote sensing evapotranspiration model calculation Spatial scope: Heihe River Basin Time range: data from 2001 to 2014
WANG Zhongjing, ZHENG Hang
The fraction of absorbed photosynthetically active radiation data set of the Heihe River Basin provides the fraction of absorbed photosynthetically active radiation data products from 2013 to 2014. The fraction of absorbed photosynthetically active radiation is the the ratio of photosynthetically active radiation absorbed by the canopy that passes through the canopy and then reflected from the canopy during the passage of the canopy to total photosynthetically active radiation. It is determined by the physiological and ecological characteristics and structural characteristics of vegetation canopy. This data set algorithm is developed on the basis of the energy conservation-based FPAR inversion method, in order to reflect the different path and the absorption probability of direct radiation and scattered radiation in the canopy, a FPAR inversion model is developed, which can distinguish direct radiation from scattering radiation. The algorithm can invert the direct FPAR, scattered FPAR and total FPAR of the canopy of the vegetation. The RMSE obtained from the inversion between the instantaneous FPAR and the observed FPAR is 0.0289, and the R2 is 0.8419.
LI Li, ZHONG Bo, WU Junjun, WU Shanlong, XIN Xiaozhou
"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-MODIS Products-Land Use Data in Northwest China (2000-2010) 1. Data summary: Land Use Data in Northwest China (2000-2010) 2. Data content: Land use data of Shiyanghe River Basin, Heihe River Basin and Shulehe River Basin in Northwest China from 2000 to 2010 obtained by MODIS
WANG Zhongjing
Evapotranspiration monitoring is very important for agricultural water resource management, regional water resource utilization planning and sustainable development of social economy. The limitation of traditional monitoring et method is that it can't be observed in large area at the same time, so it can only be limited to the observation point. Therefore, the cost of personnel and equipment is relatively high. It can't provide the ET data of different land use types and crop types. Remote sensing can be used for quantitative monitoring of ET. the feature of remote sensing information is that it can reflect not only the macro structural characteristics of the earth's surface, but also the micro local differences. This data uses MODIS data and m-sebal model from June to September 2012 and time scale expansion scheme based on reference evaporation ratio to estimate the spatial and temporal distribution of evapotranspiration in the whole growth season of the middle reaches of Heihe River, and uses ground observation data to evaluate m-sebal model and time scale expansion scheme in detail. Its time resolution is day by day, spatial resolution is 250m, and data coverage is in the middle reaches of Heihe River, unit: mm. The projection information of the data is as follows: UTM projection, 47N.
ZHOU Yanzhao, ZHOU Jian
The research project on land surface data assimilation system in western China belongs to the major research plan of "environmental and ecological science in western China" of the national natural science foundation. the person in charge is researcher Li Xin of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. The output data set of the Land Surface Assimilation System in Western China is one of the data achievements of the project. It is a Chinese Land Surface Data Assimilation System constructed by Dr. Huang Chun Lin and researcher Li Xin of the Institute of Cold and Arid Region Environment and Engineering, Chinese Academy of Sciences. CoLM model is used as a model operator to couple microwave radiation transmission models for different surface states such as soil (including melting and freezing), snow cover, etc. and to assimilate passive microwave observations (SSM/I and AMSR-E), so that the system can finally output assimilation data of soil moisture, soil temperature, snow cover, frozen soil, sensible heat, latent heat, evaporation, etc. with higher accuracy. Data format and naming: It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: YYYMMDDHH.grid, where YY is the year (2002), MM is the month, DD is the day, HH is the hour,. grid and. flux are file extensions, the former is the state variable output result and the latter is the flux output result. The file format is a binary FLOAT value, that is, every 4 bytes represents a value.
LI Xin, HUANG Chunlin
This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).
HUANG Xiaodong
This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn