This database includes slope, aspect and digital elevation model (DEM) data of Qinghai Tibet Plateau. The data comes from the 30m * 30m resolution numerical elevation model data downloaded from the geospatial data cloud website. Using the surface analysis function of ArcGIS software, the slope and aspect information of the Qinghai Tibet Plateau are extracted. The data has been rechecked and reviewed by many people, and its data integrity, position accuracy and attribute accuracy meet the standards, with excellent and reliable quality. As one of the engineering geological conditions, this data is the basic data for the research on the development law of major engineering disturbance disasters and major natural disasters in the Qinghai Tibet Plateau and the analysis of susceptibility, risk and risk.
QI Shengwen
This data is the disturbance disaster data of 1:250000 major projects in the Qinghai Tibet Plateau. For the scope of disaster interpretation, line engineering (national highway, high-speed, railway and Power Grid Engineering) and hydropower engineering are bounded by the first watershed on both sides of the project; Mine, oilfield and port projects are bounded by 1km away from the project. Engineering disturbance disasters can be divided into two categories: ① landslide, collapse and debris flow disasters induced by engineering construction; ② For natural disasters that may affect the project, it is stipulated that all natural disasters within the above interpretation scope belong to category ② engineering disturbance disasters. The data includes the location, length, width, height difference, distribution elevation, genetic type, inducing factors, occurrence time, lithology and other elements of landslide, disaster related projects and project construction years. Based on Google Earth image and 1:500000 geological diagram, 6176 disaster points were interpreted; Google Earth is mainly used for disturbance disaster interpretation, and combined with field investigation to verify the interpretation results, ArcGIS is used to generate disaster distribution map; The data comes from Google Earth high-resolution images, with high accuracy of original data. In the process of generating disaster files, the interpretation specifications are strictly followed, and special personnel are assigned to review, so the data quality is reliable; Based on the collected data, the disaster risk analysis of the study area can be carried out to provide theoretical guidance for the smooth operation of the built projects and the construction of the line projects not built / under construction.
QI Shengwen
This data includes 1:4 million precision fault data within the scope of Qinghai Tibet Plateau in China. The attribute table fields include fault name, fault length, strike, dip, fault property, paleoearthquake, etc. The data comes from the Seismological Bureau. Later, by consulting a large number of fault related literature, the attribute of fault activity age is added on the basis of the original data. The accuracy of original data is reliable, and a special person is responsible for quality review; After review by many people, the data integrity, position accuracy and attribute accuracy meet the requirements of relevant technical regulations and standards, and the quality is excellent and reliable. The fault data can provide basic data support for some fault related research work in the Qinghai Tibet Plateau.
QI Shengwen
The data coverage area is Sichuan Tibet traffic corridor, which is vector line data. The data defines its active period and names it. The strike, nature, active period and exposure of the fault are described. However, the content is missing, and the secondary fault zone is not named. There are 590 linear elements within the Sichuan Tibet traffic corridor in this data set, but some linear elements are multiple elements of the same fault zone. The active fault zone is often the combination zone of different plates and different blocks. It is a relatively weak zone of the crust, which is easy to induce extremely serious earthquake disasters. It is also a concentrated development zone of geological disasters such as collapse, landslide and debris flow. The judgment of the location and nature of fault zone is of great significance to the risk susceptibility evaluation of geological disasters, and it is the key factor to study geological disasters.
WANG Lixuan
The data set mainly includes typical rare earth deposits in China, such as Maoniuping and Lizhuang rare earth deposits in Mianning, Western Sichuan, and Gansha OBO rare earth deposits in Gansu Province. These rare earth deposits are genetically related to carbonate alkaline rock complex. In situ U-Pb dating, whole rock major and trace elements, Sr nd Pb radioisotopes, C-O-B-Ca stable isotopes and mineral in situ major and trace elements contents of rocks or ores in these complexes were analyzed. The major elements were measured by X-ray fluorescence spectrometer (XRF), the trace elements were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the isotopes were mainly measured by mc-icp-ms. The main conclusions are as follows: (1) it is revealed that the magma source area of alkaline carbonate type REE deposit experienced the addition of strong subduction material, and its formation depth may be deeper than previously thought(2) It is revealed that the aegirization may be related to carbonatite and alkaline magmatism, and there may be differences in the aegirization between the two types of magma(3) The later reformation of the rare earth deposits with younger age may be relatively weak, while the rare earth deposits with older age are easy to be influenced by the later geological process and difficult to distinguish.
WENG Qiang, LI Ningbo, LI Ao
We compiled the Seismotectonic Map and Seismic Hazard Zonation Map of Central Asia using the ArcGIS platform through data collecting and digitization. The seismotectonic map of Western Asia covers Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan and Turkmenistan. The seismotectonic map is replenished with tremendous amount published data and depicts the location, character and name of the seismogenic faults or active faults and the epicenter of earthquakes with M ≥ 5 from 1960 to 2010. The zonation map shows the mean values of peak ground acceleration (PGA) with 10% probability of being exceeded in 50 years. The two maps can not only be used in the research of active faults and seismic risks in Central Asia, but also will be applied to the seismic safety evaluation for infrastructure construction.
LUO Hao
The dataset includs borehole core lithology, altitude survey, soil thickness and slop measurement, hydrogeological survey, and hydrogeophysical survey in the Maqu catchment of the Yellow River source region in the Tibetan Plateau. The borehole lithology data is from the 2017 drilled borehole ITC_ Maqu_ 1; altitude survey was carried out using RTK in 2019; Soil thickness and slope data were collected by auger and inclinometer in 2018 and 2019; hydrogeological survey includes groundwater table depth measurements in 2018 and 2019, and aquifer test data obtained in 2019; hydrogeological survey includes Magnetic Resonance Sounding (MRS) , Electrical Resistivity Tomography (ERT) , Transient Electromagnetic (TEM) , and magnetic susceptibility measurements. MRS and ERT surveys were conducted in 2018. TEM and magnetic susceptibility measurements were carried out in 2019.
LI Mengna, ZENG Yijian, Maciek W. LUBCZYNSKI, BOB Su, QIAN Hui
Temporal aliasing caused by the incomplete reduction of high frequency atmosphere and ocean variability contributes as a major error source in the time-variable gravity field products recovered from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO), and likely future gravity missions. The current state-of-the-art of satellite gravity data processing makes use of de-aliasing products to reduce high-frequency mass anomalies, for example, the most recent official Atmosphere and Ocean De-aliasing products (AOD1B-RL06) are applied to model non-tidal mass changes in the ocean and atmosphere. The products already achieved a temporal resolution of 3 hours that greatly improved the quality of gravity inversion compared to the previous releases. In this study, we explore a refined mass integration approach of the atmosphere that considers geometrical, physical, and numerical modifications of the current AOD1B method. Then, the newly available ERA-5 global climate data of 31 km spatial and 1-hour temporal resolution are used to produce a new set of non-tidal atmosphere de-aliasing product (HUST-ERA5) that is computed in terms of spherical harmonics up to degree/order 100 covering 2002 onwards. Despite of an overall agreement with the AOD1B-RL06 (correlation of low-degree coefficients are all greater than 0.99), discrepancy is still distinguished for spatial-temporal analysis, i.e., a better consistency of HUST-ERA5 from 2007 to 2010. The factors contributing the differences, including the input data, method and temporal resolution, are therefore respectively analyzed and quantified through extensive assessments. We find the difference of HUST-ERA5 and AOD1B-RL06 has led to a mean variation of 7.34 nm/s on the the LRI (Laser Ranging Interferometry) range-rate residual on Jan 2019, which is close to the LRI precision already. This impact is invisible for GRACE(-FO) gravity inversion because of the less accurate onboard KBR(K-band ranging) instrument, however, it will be nonnegligible and should be considered when the LRI completely replaces KBR in the future gravity mission. In addition, HUST-ERA5 can also be widely used in LEO satellite orbit determination and superconducting gravimeter atmospheric correction.
YANG Fan, LUO Zhicai
The data content mainly includes the main and micro data of the whole rock of some magmatic rocks in the Hoh Xil Lhasa plate of the Qinghai Tibet Plateau. The samples were mainly distributed in Hoh Xil lake, South Qiangtang guoganjianian, Dugur, and Gangdise Nasongduo and Saga counties. There are more than 300 major and trace elements in the samples, including olivine leucite, quartz monzonite, diorite and granite, which are of great significance to the study of the lithospheric evolution of the Qinghai Tibet Plateau. Data mainly come from published articles or being accepted. XRF spectroscopy was used to determine the major elements and ICP-MS was used to determine the trace elements. The data quality is highly reliable, and the testing units include the State Key Laboratory of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, etc. The data are published in high-level journals, including geology, BSA bulletin and Journal of petroleum.
TANG Gongjian, WANG Jun, QI Yue, ZHOU Jinsheng, DAN Wei
Based on GRACE Level-1b satellite gravity data, a time series of mass change over Greenland for the period 2002 to 2016, with a spatial resolution of 1 degree × 1 degree and a time resolution of one month was developed by the satellite gravity team led by Professor Shen Yunzhong from Tongji University. The reference time of this time series is the mean time span between January 2004 and December 2009. During data processing, ICE5G model was used to reduce the effect of GIA, and the contribution of GAD was added back by using AOD1B RL06 from GFZ
SHEN Yunzhong
The data set includes soil pH data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
We compiled the Seismic Zonation Map of Western Asia using the ArcGIS platform through data collecting and digitization. The Seismic Zonation map of Western Asia covers Iran and its surrounding countries and regions. Based on the “Major active faults of Iran” map, the map is replenished with massive published data and depicts the location and nature of the seisogenic faults or active faults and the epicenter of earthquakes with M ≥ 5 from 1960 to 2019. The zonation map shows the mean values of peak ground acceleration (PGA) with 10% probability of being exceeded in 50 years. The two maps can not only be used in the research of active faults and seismic risks in Western Asia, but also will be applied to the seismic safety evaluation for infrastructure construction.
LIU Zhicheng
This data comes from the result of teleseismic data, mainly including the velocity and radial anisotropic structures beneath western Tibet. In the process of processing, bandwidth filtering is adopted, and the filtering range is 0.05-2 Hz. Due to the use of teleseismic data, the cross-correlation method is used in the acquisition process to "align" the waveform. The data quality is good, because the extracted data are all from the earthquakes with magnitude greater than 5.0 located in the global seismic catalog, and each event has an obvious take-off point. The data can be used by other seismologists to reconstruct and analyze the underground structures in this area.
ZHANG Heng
We use waveform cross-correlation to analyze the recordings of eight earthquakes (2009-2018) beneath the Indian Ocean at stations from the Chinese Digital Seismic Network. We obtain 929 high quality residual traveltime differences between the phases ScS and S (Differential traveltimes.dat). We interpret variations of δt up to 10 seconds as due to horizontal shear-velocity variations in D” beneath northern India, Nepal, and southwestern China. The shear velocity can vary by as much as 7% over distances shorter than 300 km. Our observations provide additional observational evidence that compositional heterogeneity and possibly melt contribute to the seismic structure of the lower mantle characterized by long-term subduction and mantle downwelling.
LI Guohui, BAI Ling
The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil organic carbon concentrations data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
Since 2006, China Geological Survey Bureau has organized and implemented the work of "Integration and comprehensive research on the basic geological survey results of the Tibetan Plateau". Based on the 1:250,000 regional geological survey on the blank area of the Tibetan Plateau and the latest research results at home and abroad, with the integration and comprehensive research, one of a series of maps, "1:1.5 million geological map of the Tibetan Plateau and its surrounding areas" have been compiled. The map is published by Geological Publishing House. Based on 177 1:250,000 Regional Geological Survey data, the regional strata and structure stratigraphic system are systematically determined, including 9 strata and structure stratigraphic areas, 36 strata and structure stratigraphic areas and 63 strata and structure stratigraphic areas. The lithostratigraphic division and correlation sequence of the Tibetan Plateau and its surrounding areas are established. A large number of geological records of geological evolution and uplift of the Tibetan Plateau are presented, which focus on the new discovery, new progress and new understanding of geological investigation and research. The projection of the map is Conformal Conic Projection, the first standard latitude is 28 °, the second standard latitude is 37 °, the central longitude is 89 °, and the projection origin latitude is 26 ° north latitude. This data is obtained by scanning the paper map “1:1.5 million geological map of the Tibetan Plateau and its surrounding areas” with a high-resolution scanner, and splicing the sub maps. In the process of scanning, keep the map surface as flat as possible to reduce the error. The copyright of the map belongs to the publishing house. This data can be used by researchers who are engaged in the geological and geomorphological research of the Tibetan Plateau, it can be used for the research of regional resources exploration, geological science research, construction of major engineering facilities, environmental protection and disaster prevention in the Tibetan Plateau.
Geological Publishing House GPH
Since 2006, China Geological Survey Bureau has organized and implemented the work of "Integration and comprehensive research on the basic geological survey results of the Tibetan Plateau". Based on the 1:250,000 regional geological survey on the blank area of the Tibetan Plateau and the latest research results at home and abroad, with the integration and comprehensive research, one of a series of maps, "1:1.5 million geotectonic map of the Tibetan Plateau and its surrounding areas" have been compiled. It is published by the Geological Publishing House. The geotectonic environment of the geological body is analyzed according to the geotectonic facies division plan (3 major facies, 18 basic facies and 36 subfacies), with the 36 geotectonic subfacies as the basic mapping unit, the geotectonic map of the Tibetan Plateau and its surrounding areas is compiled. The projection of the map is Conformal Conic Projection, the first standard latitude is 28 °, the second standard latitude is 37 °, the central longitude is 89 °, and the projection origin latitude is 26 ° north latitude. This data is obtained by scanning the paper map “1:1.5 million geotectonic map of the Tibetan Plateau and its surrounding areas” with a high-resolution scanner, and splicing the sub maps. In the process of scanning, keep the map surface as flat as possible to reduce the error. The copyright of the map belongs to the publishing house. This data can be used by researchers who are engaged in the geological and geomorphological research of the Tibetan Plateau, it can be used for the research of regional resources exploration, geological science research, construction of major engineering facilities, environmental protection and disaster prevention in the Tibetan Plateau.
Geological Publishing House GPH
The Pan-Third Polar region has strong seismic activity, which is driven by the subduction and collision of the Indian plate, the Arab plate and the Eurasian plate. 3809 earthquakes with Magnitude 6 or larger have occurred in Pan-Third Polar region (north latitude 0-56 degrees and east longitude 43-139 degrees) since 1960. Among them, 59 earthquakes with Magnitude 8 or larger, 689 earthquakes with Magnitude 7.0-7.9 and 3061 earthquakes with Magnitude 6.0-6.9 have occurred. Earthquakes occurred mainly in the foothills of the India-Myanmar Mountains, the Himalaya Mountains, the Sulaiman Mountains, where the India Plate collided with the Eurasian plate, and the Zagros Mountains where the Arab plate collided with the Eurasian plate.
WANG Ji
The data set is the distribution of the average roughness in Central Asia including three temperate deserts, the Karakum, Kyzylkum and Muyunkun Deserts, and one of the world's largest arid zones. This is the MODIS-NDVI data set calculated by using the median particle diameter and the vegetation coverage. The space and time resolutions are 500 m and 16 days, respectively. The time is from 01, January, 2017 to 18, December, 2017. The data set uses the the Geodetic coordinate system. It can be used for the investigation of the Desert oil and gas field, and oasis cities.
GAO Xin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn