The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
JIANG Liming JIANG Liming JIANG Liming
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
This data is a high-resolution soil freeze/thaw (F/T) dataset in the Qinghai Tibet Engineering Corridor (QTEC) produced by fusing sentinel-1 SAR data, AMSR-2 microwave radiometer data, and MODIS LST products. Based on the newly proposed algorithm, this product provides the detection results of soil F/T state with a spatial resolution of 100 m on a monthly scale. Both meteorological stations and soil temperature stations were used for results evaluation. Based on the ground surface temperature data of four meteorological stations provided by the national meteorological network, the overall accuracy of soil F/T detection products achieved 84.63% and 77.09% for ascending and descending orbits, respectively. Based on the in-situ measured 5 cm soil temperature data near Naqu, the average overall accuracy of ascending and descending orbits are 78.58% and 76.66%. This high spatial resolution F/T product makes up traditional coarse resolution soil F/T products and provides the possibility of high-resolution soil F/T monitoring in the QTEC.
ZHOU Xin , LIU Xiuguo , ZHOU Junxiong , ZHANG Zhengjia , CHEN Qihao , XIE Qinghua
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
HUANG Yan , XU Jianghui
Surface melting is the primary reason that affects the mass balance of Greenland ice sheet. At the same time, ice and snow have high albedo, and ice sheet surface melting will cause the difference of radiation energy budget, and then affects the energy exchange between sea-land-air. The high-resolution ice sheet surface melting product provides important information support for the study of Greenland ice sheet surface melting and its response to global climate change. This dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Greenland ice sheet surface melt daily product for 1985, 2000, 2015 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Greenland ice sheet, and the data set is stored as *.nc.
WEI Siyi,
Snow, ice, and glaciers have the highest albedo of any part of Earth's surface. The increase in melting of the polar ice sheet results in a rapid and sequential decrease in albedo and subsequently influences the global energy balance. The hydrological system derived from surface melt and basal meltwater will affect the dynamic stability of ice sheet and therefore mass balance. The dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Antarctic ice sheet surface melt daily product for 1985-1986, 2000-2001, 2015-2016 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. It better reflects the melting gradient of mountainous area, groundline area and ice shelf over time, DSSMIS has a higher accuracy. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Antarctic ice sheet, and the data set is stored as *.nc.
WEI Siyi,
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area on Oct. 17, 2007 during the pre-observation period. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected: the soil temperature , volumetric soil moisture (cm^3/cm^3), soil salinity (s/m), soil conductivity (s/m) by the Hydra probe, the surface radiative temperature by the handheld infrared thermometer, gravimetric soil moisture, volumetric soil moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for the development and validation of soil moisture, soil freeze/thaw algorithms and the forward model from active remote sensing approaches.
BAI Yunjie, CAO Yongpan, LI Xin, Wang Weizhen, WANG Xufeng
The dataset of ground truth measurement synchronizing with EO-1 Hyperion was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 25, 2008. Observation items included: (1) Atmospheric parameters on the ICBC resort office roof by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Ground object reflectance spectra f new-born rape and the bare land in Biandukou foci experimental area by ASD FieldSpec (350~2500 nm) from BNU. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Soil moisture (0-40cm) by the cutting ring and the soil temperature (0-40cm) by the thermocouple in Huazhaizi desert No. 1 plot and the windbreak forest; and soil moisture and the soil temperature (0-100cm) in Yingke oasis maize field. Data were archived in Excel format. (4) LAI. The maximum leaf length and width of each alfalfa and barley were measured. Data were archived in Excel format. (5) Coverage of maize and wheat in Yingke oasis maize field, of vegetation (Reaumuria soongorica) in Huazhaizi desert No. 1 and 2 plots by the self-made coverage instrument and the camera (2.5m-3.5m above the ground). Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as surroundings environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage.
CHEN Ling, QIAN Yonggang, REN Huazhong, WANG Haoxing, YAN Guangkuo, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LI Li, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, TAO Xin, YAN Binyan, YAO Yanjuan
The dataset of ground truth measurements for snow synchronizing with Envisat ASAR was obtained in the Binggou watershed foci experimental area on Mar. 15, 2008. The Envisat ASAR data were acquired in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-B, BG-D, BG-E and BG-F; (2) Snow parameters including the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, snow depth by the ruler, and the snow surface temperature synchronizing with ASAR in BG-H, BG-D, BG-E and BG-F; (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) synchronizing with ASAR in BG-H15; the major and minor axis and shape of the snow layer grain through the self-made snow sieve. Two files including raw data and the preprocessed data were archived.
BAI Yanfen, BAI Yunjie, GE Chunmei, HAO Xiaohua, LI Hongyi, LIANG Ji, SHU Lele, WANG Xufeng, XU Zhen, MA Mingguo, QU Wei, REN Jie, CHANG Cun, DOU Yan, MA Zhongguo, LIU Yan, ZHANG Pu
The dataset of ground truth measurements for snow synchronizing with EO-1 Hyperion and Landsat TM was obtained in the Binggou watershed foci experimental area on Mar. 17, 2008. Observation items included: (1) Snow parameters as snow depth by the ruler, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer simultaneous with the satellite in BG-A, BG-E, BG-F and BG-H. (2) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A, BG-E and BG-H. Besides, 25-hour fixed-point continuous observation was carried out at the Binggou cold region hydrometerological station. (3) The snow spectrum by ASD (Xinjiang Meteorological Administration) (4) Snow albedo by the total radiometer Two files including raw data and preprocessed data were archived.
BAI Yanfen, BAI Yunjie, GE Chunmei, HAO Xiaohua, LIANG Ji, SHU Lele, WANG Xufeng, XU Zhen, ZHU Shijie, MA Mingguo, CHANG Cun, DOU Yan, MA Zhongguo, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu
The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 5 and Jul. 6, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:14 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Observation items included: (1) the quadrate investigation in No. 2 and 3 quadrates: GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. (2) spectrum of stellera and pasture by ASD FieldSpec (350~2 500 nm), with 20% reference board. The preprocessed canopy spectrum was archived. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board. The processed reflectance and transmittivity were archived as .txt files. (4) photosynthesis of stellera and pasture by LI-6400. The data were archived in Excel format. (5) soil moisture by WET soil moisture tachometer. Acquisition time, soil moisture (%vol), Ecp (ms/m), Tmp Eb and Ecb (ms/m) of 25 corner points were archived. (6) the soil temperature by the handheld infrared thermometer. Acquisition time, the soil temperature measured three times and the land cover types were archived. The data included the canopy reflectance on Jul. 5 and 6, photosynthesis on Jul. 5 and 6, BRDF on Jul. 5, photos on Jul. 5, the infrared land surface temperature and soil moisture by WET on Jul. 5, biomass on Jul. 5 and the surface temperature along No. 3 flight on Jul. 6.
DING Songchuang, GE Yingchun, LI Hongyi, MA Mingguo, Qian Jinbo, WANG Yang, YU Yingjie, LIU Sihan
The dataset of ground truth measurements synchronizing with Terra MISR and MODIS was obtained in sampling plot BG-A of the Binggou watershed foci experimental area on Dec. 10 and Dec. 11, 2007 during the pre-observation period. Observation items included: (1) Snow parameters including the snow surface temperature, the snow-soil interface temperature, the land surface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, snow depth by the ruler and the snow grain size by the handheld microscope. (2) Snow density in "WATER: Dataset of snow density measurements in the Binggou watershed foci experimental area on Dec. 6 and Dec. 10, 2007 during the pre-observation period" (3) Snow properties in "WATER: Dataset of snow properties measured by the Snowfork in the Binggou watershed foci experimental area during the pre-observation period" Raw data and pre-processed data including snow parameters synchronizing with Terra MISR and MODIS and the temperature synchronizing with MODIS were archived herein.
LI Xin, WANG Jian, MA Mingguo, Wang Weizhen, CHE Tao, HAO Xiaohua, LI Hongyi, LIANG Ji, BAI Yunjie, WANG Xufeng, WU Yueru, WANG Yang, LUO Lihui, ZHANG Pu, LIU Yan
The dataset of chlorophyll content observations was obtained in the Yingke oasis and Linze grassland foci experimental areas. Observation items included: (1) Chlorophyll content synchronizing with TM in Yingke oasis No. 1, 4 and 5 maize plots on May 20, 2008. (2) Chlorophyll content synchronizing with ASTER and MODIS in Linze grassland foci experimental areas on May 24, 2008. (3) Chlorophyll content synchronizing with ASTER and MODIS in Yingke oasis maize field on May 28, 2008. (4) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) in Yingke oasis maize field on May 30, 2008. (5) Chlorophyll content synchronizing with OMIS-II in Yingke oasis maize field on Jun. 16, 2008. (6) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) in Yingke oasis maize field on Jun. 29, 2008. (7) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) and TM in Yingke oasis maize field on Jul. 7, 2008. (8) Chlorophyll content synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner) in Yingke oasis maize field on Jul. 11, 2008.
LI Li, XIN Xiaozhou, ZHANG Yang, ZHOU Mengwei
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in the Linze station foci experimental area from Sep. 12 to Sep. 15, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Observation items included: (1) GPS by GARMIN GPS 76 (2) LAI by LAI-2000 (3) photosynthesis measured by LI6400 from Linze station carried out according to WATER specifications. Raw data were archived in the user-defined format , which can be opened by notepat and processed by Excel. (4) object spectrum of typical ground objects measured by ASD FieldSpec Spectroradiometer (350~2 500 nm) from Gansu Meteorological Administration. The reference whiteboard was attached therein. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as text files (.txt). (5) infrared temperature measured by the handheld infrared thermometer from Cold and Arid Regions Environmental and Engineering Research Institute, which was calibrated. The infrared temperature of the crown, the vertical canopy, 45 degrees frontlight and backlight were measured respectively. The data were archived as Excel files. (6) soil profile (0-10cm, 10-20cm, 20-40cm and 40-60cm), and soil moisture measured by the cutting ring method. Profile photos were taken meanwhile. (7) quadrate (1m×1m) investigations, including the quadrate number, species, quantities, coverage, the total quadrate coverage, the mean height, biomass number, the total green weight and the total dry weight. (8) repeated measurements on chlorophyll content of different species measured by SPAD 502. (9) photos taken by Nikon D80 with a lens of Sigma 8mm F3.5 EX DG CIRCULAR FISHEYE, shooting straight downwards at the height of 1.5m (10) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) in Excel are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
BAI Yunjie, CHE Tao, DING Songchuang, GAO Song, HAN Xujun, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe, LIANG Ji, PAN Xiaoduo, QIN Chun, RAN Youhua, WANG Xufeng, WU Yueru, YAN Qiaodi, ZHANG Lingmei, FANG Li, LI Hua, Liu Qiang, Wen Jianguang, MA Hongwei, YAN Yeqing, YUAN Xiaolong
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn