The application of general circulation models (GCMs) can improve our understanding of climate forcing. In addition, longer climate records and a wider range of climate states can help assess the ability of the models to simulate climate differences from the present. First, we try to find a substitute index that combines the effects of temperature in different seasons and then combine it with the Beijing stalagmite layer sequence and the Qilian tree-ring sequence to carry out a large-scale temperature reconstruction of China over the past millennium. We then compare the results with the simulated temperature record based on a GCM and ECH-G for the past millennium. Based on the 31-year average, the correlation coefficient between the simulated and reconstructed temperature records was 0.61 (with P < 0.01). The asymmetric V-type low-frequency variation revealed by the combination of the substitute index and the simulation series is the main long-term model of China's millennium-scale temperature. Therefore, solar irradiance and greenhouse gases can account for most of the low-frequency variation. To preserve low-frequency information, conservative detrended methods were used to eliminate age-related growth trends in the experiment. Each tree-ring series has a negative exponential curve installed while retaining all changes. The four fields of the combined 1000-yr (1000 AD-2000 AD) reconstructed temperature records derived from stalagmite and tree-ring archives (excel table) are as follows: 1) Year 2) Annual average temperature reconstruction 3) Reconstructed temperature deviation 4) Simulated temperature deviation
TAN Ming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn