Basic Geographic Data Set of Resources and Environment in Central and Western Asia Region, includes six parts: administrative divisions map, topographic and geomorphological map, river system maps, precipitation map, temperature map and potential evapotranspiration map. The precipitation and temperature datasets are interpolated based on the ground observations, while the potential evapotranspiration dataset is calculated based on the Penman-Monteith equation. The precipitation, temperature and potential evapotranspiration datasets are resampled from the original 0.5° CRU dataset by using the linear interpolation method in ArcGIS software. This dataset is made based a large number of gauge observations with good quality control and homogeneity check. The results of the related studies (Deng and Chen, 2017; Li et al., 2017; Li et al., 2016) suggested that this dataset is applicable and satisfactory for the climatological studies. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.
The sand drift potential data sets of Central Asia in 2017 is in tif format. It covers five countries in Central Asia, including Uzbekistan, Tajikistan, Kyrgyzstan, Kazakhstan and Turkmenistan. The sand drift potential is absolutely drift potential, that is, the sum of the flux in all directions, regardless of the direction of the potential. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The temporal resolution is month, the spatial resolution is 0.25°, and the time range is 2017. This data set can be used as an important reference data for sand storm disaster assessment.
GAO Xin
The data set is the distribution of the average roughness in Central Asia including three temperate deserts, the Karakum, Kyzylkum and Muyunkun Deserts, and one of the world's largest arid zones. This is the MODIS-NDVI data set calculated by using the median particle diameter and the vegetation coverage. The space and time resolutions are 500 m and 16 days, respectively. The time is from 01, January, 2017 to 18, December, 2017. The data set uses the the Geodetic coordinate system. It can be used for the investigation of the Desert oil and gas field, and oasis cities.
GAO Xin
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Heihe River Basin water system map is one of the hydrological and water resources part of the atlas, with a scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data sources: river data of Heihe River Basin, reservoir distribution data of Heihe River Basin, residential area data of Heihe River Basin in 2009, administrative boundary data of one million Heihe River Basin in 2008, Lake data of Heihe River Basin and other basic geographic data. The upper reaches of Heihe River Basin are located in Qilian County, Haibei Tibetan Autonomous Prefecture, Qinghai Province, and the northern foot of Qilian Mountain in Zhangye, Jiuquan City, Sunan and Subei counties of Gansu Province. The middle reaches are located in Shandan, Minle, Ganzhou, Linze, Gaotai, Sunan, Suzhou, Jiayuguan and Yumen counties of Gansu Province. The lower reaches are located in Jinta, Gansu Province, Ejina Banner and Alxa Right Banner of Inner Mongolia, involving three provinces (autonomous regions), 16 cities and counties (District, banner), 56 towns, 45 townships and 4 Sumu. Table 1 shows the information about the administrative divisions of Heihe River Basin.
WANG Jianhua, ZHAO Jun, WANG Xiaomin, FENG Bin
The Shiyang River Basin Information System thematic data set is one of the results of the technical assistance project “Optimization of Desertification Control in Gansu Province” assisted by the Asian Development Bank, including 5 folders including document, investigation_point, maps, photo, and spatial. Each file The folder contains several files. The document folder includes the target design, data processing, thematic summary report, and projection information.The gpspoint folder includes files recorded in shapefile point format sampled by gps according to different purposes.The maps folder contains Chinese, english, and fonts files. Folder, the first two folders represent 14 Chinese and English maps stored in A4 format and pdf format, and fonts contain some special fonts: the photo folder contains field survey digital photos stored in bmp format: spatial The folder contains the dem folder of the digital elevation model, the gansu folder of the outline map of Gansu Province and the Hexi Corridor, the generate folder of the site data file shapefile, the grid folder of the raster data of various geographic features, and the remote sensing image. image folder, meteoHydro folder for original site text data, and vector folder for vector data for various geographic features. The data includes: 1. DEM folder: 100m dem, hillshade, divided into GRID and geotif formats 2. Gansu folder: Gansu border, Hexi border 3. Grid folder: NDVI (vegetation index), lndchange (land transfer matrix), landscape86 (land landscape map in 86 years), landscape2k (land landscape map in 2000), Desertiftype (desert type landscape map), Desersevrt (desert type map ), Annprecip 4. Meteohydro folder: Minqin, Wuwei, Yongchang meteorological data (1) daily daily observation items: Airpress (humidity), Precipitation (radiation), Sunlight (sunlight), Temperature (temperature) ), Wind (wind speed) (2) Months (monthly): Airpress (air pressure), Humidity (humidity), Rain (precipitation), Sunlight (sunlight), Temperature (temperature), Wind (wind speed) (3) tendays: Airpress, Humidity, Rain, Sunlight, Temperature, Wind (4) years (year by year): Precipitation, Temperature 5. Vectro folder: (1) Admwhole (county boundary map), (2) Lake (lake), (3) Hydrasta (hydrological site), (4) Basin (watershed boundary), (5) Landscape2000 (land use 200 (Year), (6) landscape86 (land use 1986), (7) Meteosta (meteorological station), (8) Lakep (reservoir point), (9) Place (residential point), (10) Rainfallcontour (railway), ( 11) Rainfallcontour (rainfall contour map), (12) Road (highway), (13) Stream (water system map), (14) Town (county name), (15) Township (county township boundary), (16) Vegetation (vegetation map) Data projection information: PROJCS ["Albers", GEOGCS ["GCS_Krasovsky_1940", DATUM ["Not_specified_based_on_Krassowsky_1940_ellipsoid", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]] For detailed data description, please refer to the data file
LI Xin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn