Coupled Model Intercomparison Project Phase 5 (CMIP5) provides a multiple climate model environment, which can be used to predict the future climate change in the key nodes in the Belts and Road to deal with the environmental and climate problems. Key nodes in the Belt and Road are taken as the study regions of this dataset. The ability of 43 climate models in CMIP5 to predict the future climate change in the study regions was assessed and the optimal models under different scenarios were selected according to the RMSE between the prediction results and real observations. This dataset is composed of the prediciton results of precipitation and near-surface air temperature between 2006 and 2065 using the optimal models in monthly temporal frequncy. The spatial resolution of the dataset has been downscaled to 10 km using statistical downscaling method. Data of each period has three bands, namely maximum near-surface air temperature, minimum near-surface air temperature and precipitation. In this data set, the unit of precipitation is kg / (m ^ 2 * s), and the unit of near-surface air temperature is K. This dataset provides data basis for solving environmental and climate problems of the key nodes in the Belts and Road.
LI Xinyan, LING Feng
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn