The dataset is the remote sensing image data ofGF-1 satellite in the Qinghai-Tibet engineering corridor obtained by China High Resolution Earth Observation Center. After the fusion processing of multispectral and panchromatic bands, the image data with a spatial resolution of 2 m is obtained. In the process of obtaining ground vegetation information, the classification technology of combining object-oriented computer automatic interpretation and manual interpretation is adopted, The object-oriented classification technology is to collect adjacent pixels as objects to identify the spectral elements of interest, make full use of high-resolution panchromatic and multispectral data space, texture and spectral information to segment and classify, and output high-precision classification results or vectors. In actual operation, the image is automatically extracted by eCognition software. The main processes are image segmentation, information extraction and accuracy evaluation. After verification with the field survey, the overall extraction accuracy is more than 90%.
NIU Fujun
Surface soil moisture (SSM) is a crucial parameter for understanding the hydrological process of our earth surface. Passive microwave (PM) technique has long been the primary choice for estimating SSM at satellite remote sensing scales, while on the other hand, the coarse resolution (usually >~10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to public that meet the qualification of 1-km resolution and daily revisit cycles under all-weather conditions. In this study, therefore, we have developed one such SSM product in China with all these characteristics. The product was generated through downscaling of AMSR-E and AMSR-2 based SSM at 36-km, covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical reflectance data and daily thermal infrared land surface temperature (LST) that have been gap-filled for cloudy conditions were the primary data inputs of the downscaling model, in order to achieve the “all-weather” quality for the SSM downscaling outcome. Daily images from this developed SSM product have achieved quasi-complete coverage over the country during April-September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations. We evaluated the product against in situ soil moisture measurements from over 2000 professional meteorological and soil moisture observation stations, and found the accuracy of the product is stable for all weathers from clear sky to cloudy conditions, with station averages of the unbiased RMSE ranging from 0.053 vol to 0.056 vol. Moreover, the evaluation results also show that the developed product distinctly outperforms the widely known SMAP-Sentinel (Active-Passive microwave) combined SSM product at 1-km resolution. This indicates potential important benefits that can be brought by our developed product, on improvement of futural investigations related to hydrological processes, agricultural industry, water resource and environment management.
SONG Peilin, ZHANG Yongqiang
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,
DAI Liyun
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
SHER Muhammad
The long-term evolution of lakes on the Tibetan Plateau (TP) could be observed from Landsat series of satellite data since the 1970s. However, the seasonal cycles of lakes on the TP have received little attention due to high cloud contamination of the commonly-used optical images. In this study, for the first time, the seasonal cycle of lakes on the TP were detected using Sentinel-1 Synthetic Aperture Radar (SAR) data with a high repeat cycle. A total of approximately 6000 Level-1 scenes were obtained that covered all large lakes (> 50 km2) in the study area. The images were extracted from stripmap (SM) and interferometric wide swath (IW) modes that had a pixel spacing of 40 m in the range and azimuth directions. The lake boundaries extracted from Sentinel-1 data using the algorithm developed in this study were in good agreement with in-situ measurements of lake shoreline, lake outlines delineated from the corresponding Landsat images in 2015 and lake levels for Qinghai Lake. Upon analysis, it was found that the seasonal cycles of lakes exhibited drastically different patterns across the TP. For example, large size lakes (> 100 km2) reached their peaks in August−September while lakes with areas of 50−100 km2 reached their peaks in early June−July. The peaks of seasonal cycles for endorheic lakes were more pronounced than those for exorheic lakes with flat peaks, and glacier-fed lakes with additional supplies of water exhibited delayed peaks in their seasonal cycles relative to those of non-glacier-fed lakes. Large-scale atmospheric circulation systems, such as the westerlies, Indian summer monsoon, transition in between, and East Asian summer monsoon, were also found to affect the seasonal cycles of lakes. The results of this study suggest that Sentinel-1 SAR data are a powerful tool that can be used to fill gaps in intra-annual lake observations.
ZHANG Yu, ZHANG Guoqing
Sentine-1 SAR data were used to monitor the permafrost of Biuniugou in Heihe River Basin of Qinghai-Tibet Plateau. Based on the Sentine-1 SAR image of Bison Valley from 2014 to 2018, the active layer thickness in the study area was estimated by using the small baseline set time series InSAR (DSs-SBAS) frozen soil deformation monitoring method based on distributed radar target, combined with SAR backscattering coefficient, MODIS surface temperature and Stefan model. The results show that the thickness of active layer is between 0.8 m and 6.6 m, with an average of about 3.3 M. It is of great significance to carry out large-scale and high-resolution monitoring.
JIANG Liming
Global warming and human activities have led to the degradation of permafrost and the collapse of permafrost, which have seriously affected the construction of permafrost projects and the ecological environment. Based on high-resolution satellite images, the permafrost of oboling in Heihe River Basin of Qinghai Tibet Plateau is taken as the research area, and the object-oriented classification technology of machine learning is used to extract the thermal collapse information in the research area. The results show that from 2009 to 2019, the number of thermal collapse increased from 12 to 16, and the total area increased from 14718.9 square meters to 28579.5 square meters, nearly twice. The combination of high spatial resolution remote sensing and object-oriented classification method has a broad application prospect in the monitoring of thermal thawing and collapse of frozen soil.
JIANG Liming
There are three types of glacial lakes: supraglacial lakes, lakes attached to the end of the glacier and lakes not attached to the end of the glacier. Based on this classification, the following properties are studied: the variation in the number and area of glacial lakes in different basins in the Third Pole region, the changes in extent in terms of size and area, distance from glaciers, the differences in area changes between lakes with and without the supply of glacial melt water runoff, the characteristics of changes in the glacial lake area with respect to elevation, etc. Data source: Landsat TM/ETM+ 1990, 2000, 2010. The data were visually interpreted, which included checking and editing by comparing the original image with Google Earth images when the area was greater than 0.003 square kilometres. The data were applied to glacial lake changes and glacial lake outburst flood assessments in the Third Pole region. Data type: Vector data. Projected Coordinate System: Albers Conical Equal Area.
ZHANG Guoqing
The global Cryosat-2 GDR dataset is generated by the European Space Agency (ESA); it has a temporal coverage from 2010 to 2016 and covers the globe. On April 8, 2010, the ESA launched the Cryosat-2 high-tilt polar orbit satellite. The satellite is equipped with an SAR Interferometer Radar Altimeter (SIRAL), which is mainly used to monitor polar ice thickness and sea ice thickness changes, and, furthermore, to study the effects of melting polar ice on global sea level rise and that of global climate change on Antarctic ice thickness. The altimeter operates in the Ku-band and at a frequency of 13.575 GHz, it includes three measurement modes. One is a low-resolution altimeter measurement mode (LRM) that points to the subsatellite point to obtain all surface observations for land, sea, and ice sheets; its processing is similar to ENVISAT/RA-2, with an orbital resolution of 5 to 7 km. The second is the Synthetic Aperture Radar (SAR) measurement mode, which is mainly used to improve the accuracy and resolution of sea ice observations; it can make the resolution along the orbit reach approximately 250 m. The third is the Interferometric Synthetic Aperture Radar (InSAR), which is mainly used to improve the accuracy of areas with complex terrain such as the edges of ice sheets or ice shelves. The CryoSat -2/SIRAL data products mainly include 0-level data, 1b-level data, 2-level data and high-level data. The Cryosat-2/SIRAL products consist of two files: an XML head file (.HDR) and a data product file (.DBL). The HDR file is an auxiliary ASCII file for fast identification and retrieval of the data files. 1b-level products are stored separately according to the measurement modes, and the data recording formats of different modes are also different. Each waveform in LRM mode and SAR mode has 128 sampling points, while that in SARIn mode has 512 sampling points. 2-level GDR products are available for most scientific applications, including measurement time, geographic location, altitude, and more. In addition, the altitude information in GDR products has been obtained through instrumental calibration, transmission delay corrections, geometric corrections, and geophysical corrections (such as atmospheric corrections and tidal corrections). The GDR products are single global full-track data, that is, the measurement results of the three modes. After different processing, they are combined in chronological order; thereby, the data recording formats are unified. The data in the three modes use different waveform retracking algorithms to obtain altitude values. In the latest updated Baseline C data, the LRM mode data use three algorithms: Refined CFI, UCL and Refined OCOG.
SHEN Guozhuang, FU Wenxue
The Sentinel-1A/B satellite uses a near-polar sun-synchronous orbit with an orbital altitude of 693 km, an orbital inclination of 98.18°, and an orbital period of 99 minutes. It is equipped with a C-band Synthetic Aperture Radar (SAR) with a designed service life of 7 years (12 years expected). Sentinel-l has a variety of imaging methods that enable different polarization modes such as single-polarization and dual-polarization. Sentinel-1A SAR has four working modes: Strip Map Mode (SM), Extra Wide Swath (EW), Interferometric Wide Swath (IW) and Wave Mode (WV). Satellite A was successfully launched in April 2014. The revisit period of the same region was 12 days. Satellite B successfully operated on orbit in April 2016. The current revisiting period reached 3 to 6 days. After the operation of two satellites, the S1 data acquisition frequency in the Antarctic region increased greatly. This data set comprises the Sentinel-1 SAR data for the Antarctic ice sheet and the Greenland Ice Sheet area. The data band comprises C-band extra wide multiview data with a resolution of 20 m*40 m. The temporal resolution is 12 days and is related to the round-trip period, the width is 400 km, the noise level is -25 dB, and the radiation measurement accuracy is 1.0 dB. The annual temporal coverage of these data is October to the next March in the Antarctic and April to September in Greenland, and the spatial coverage comprises the Antarctic ice sheet ice shelf area and Greenland ice sheet.
Lu Zhang
The continuous advancement of SAR interferometry technology makes it possible to obtain multitemporal DEMs with high precision in the glacial area. In particular, in 2000, the Shuttle Radar Topography Mission (SRTM) led by NASA provided DEM data covering the area from 56ºS to 60ºN; the TanDEM-X bistatic SAR interferometry system of DLR could provide the global DEM data with high resolution and precision. These high-quality, large-coverage SAR interferometry data, as well as published DEM data products, provided valuable information for using the multitemporal DEMs to detect changes in ice thickness. The temporal coverage of the ice thickness variation data of typical glaciers on the Tibetan Plateau was from 2000 to 2013, covering Puruogangri and the west Qilian Mountains with a spatial resolution of 30 meters. Using TanDEM-X bistatic InSAR data and a C-band SRTM DEM, the differential radar interferometry method was first used to generate a TanDEM-X DEM with high precision. Then, based on the precise registration of DEM, the DEM data obtained in different periods were compared. Lastly, the ice thickness changes were estimated. The format of the data set was GeoTIFF, and each typical glacier ice thickness change was stored in a folder. For details of the data, please refer to the Ice elevation changes for typical glaciers on the Tibetan Plateau - Data Description.
JIANG Liming
This data set contains the wide swath mode Level 1B SAR data acquired over Greenland in 2005 by the ASAR sensor of the ENVISAT-1 satellite. The width is 400 km, the spatial resolution is 75 m, and the absolute positioning accuracy is approximately 200 m. The SAR data are stored in a time-growth order, which causes the images of the descending track to be left-right mirror images and the images of the ascending track to be up-down images. The naming scheme for these data is as follows: ASA_IMS_1PPIPA 20050402_095556_000000162036_00065_16151_0388.N1 ASA: Product identification, ASAR Sensor IMS: Reception and processing information of the data (imaging modes, such as WS, WSS, IM, ...) 1PPIPA: Customized number 20050402: Acquisition time of the data (UTC time) 095556: Geographic location (start, end) 000000162036: Information on the satellite orbit 00065: Product trust data 16151: Size and structure information of the product 0388 => Check code
HUI Fengming
The proportion data set of daily cloudless MODIS snow cover area in babaohe river basin (2008.1.1-2014.6.1) was obtained after cloud removal processing using a cloud removal algorithm based on cubic spline function interpolation on the basis of daily cloudless MODIS snow cover product-mod10a1 (tang zhiguang, 2013). This data set adopts the projection method of UTM (horizontal axis isometric cutting cylinder), with a spatial resolution of 500m, and provides Daily Snow Albedo daily-sad results for the babao river basin.The data set is a daily file from January 1, 2008 to June 1, 2014.Each file is the snow albedo result of the day, with a value of 0-100 (%), is the ENVI standard file, and the naming rule is: mod10a1.ayyyyddd_h25v05_snow_sad_grid_2d_reproj_babaohe_nocloud.img, where YYYY represents the year, DDD stands for Julian day (001-365/366).The file can be opened directly with ENVI or ARCMAP software. The original MODIS snow cover data products processed by declouding are derived from MOD10A1 products processed by the us national snow and ice data center (NSIDC). This data set is in HDF format and USES sinusoidal projection. The attributes of the cloud-free MODIS albedo data set (2008.1.1-2014.1.1) in babaohe river basin are composed of the spatial and temporal resolution, projection information and data format of the dataset.
WANG Jian, PAN Haizhu
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No.2 quadrate of the A'rou foci experimental area on Oct. 17, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. The quadrate was divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture by ML2X; soil volumetric moisture, soil conductivity, soil temperature, and the real part of soil complex permittivity by WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The dataset of fresh snow properties observations was obtained at the temporary sampling plot in the Qilian county on Mar. 20, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included: (1) Snow parameters such as snow depth, snow grain size by the handheld microscope, and snow density by the snow shovel (2) Fresh snow albedo by the total radiometer (3) Fresh snow spectrum by ASD Two files including raw data and preprocessed data were archived.
GE Chunmei, SHU Lele, WANG Xufeng, XU Zhen, ZHU Shijie, LIU Yan, ZHANG Pu
The dataset of ground truth measurements for snow synchronizing with EO-1 Hyperion and Landsat TM was obtained in the Binggou watershed foci experimental area on Mar. 17, 2008. Observation items included: (1) Snow parameters as snow depth by the ruler, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer simultaneous with the satellite in BG-A, BG-E, BG-F and BG-H. (2) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A, BG-E and BG-H. Besides, 25-hour fixed-point continuous observation was carried out at the Binggou cold region hydrometerological station. (3) The snow spectrum by ASD (Xinjiang Meteorological Administration) (4) Snow albedo by the total radiometer Two files including raw data and preprocessed data were archived.
BAI Yanfen, BAI Yunjie, GE Chunmei, HAO Xiaohua, LIANG Ji, SHU Lele, WANG Xufeng, XU Zhen, ZHU Shijie, MA Mingguo, CHANG Cun, DOU Yan, MA Zhongguo, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu
The dataset of snow spectral reflectance observations was obtained in the Binggou watershed foci experimental area from Dec. 5 to Dec. 15, 2007 during the pre-observation period. The aims of the measurements were to verify feasibility of the predetermined observation schemes and to collect data for retrieval from remote sensing approaches. All data were acquired by ASD spectrometer from Xinjiang Meteorological Administration. Observation items included: (1) Random observations on snow spectrum in the chosen snowpack at the Binggou cold region hydrometeorological station on Dec. 5, 6 and 7, 2007 (2) Snow spectrum observations in BG-A simultaneous with MODIS and Terra MISR on Dec. 10, 2007 (3) The pure and the mixed snow pixel spectrum in BG-A on Dec. 15, 2007 (4) Multi-angle snow spectrum in the chosen snowpack in BG-A on Dec. 15, 2007 Seven subfolders including raw data and pre-processed data are named after the acquisition time, Dec. 5, 2007, Dec. 6, 2007, Dec. 7, 2007, Dec. 10, 2007, Dec. 13, 2007, Dec. 15, 2007 and Dec. 15, 2007, respectively.
ZHANG Pu, LIU Yan
The dataset of ground truth measurements for snow synchronizing with the airborne PHI mission was obtained in the Binggou watershed foci experimental area on Mar. 24, 2008. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A. (2) Snow parameters as the snow surface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, and snow density by the aluminum case in BG-A1, BG-A2, BG-B, BG-D, BG-E and BG-F5 (three sampling units each) from 11:11-12:35 (BJT) with the airplane overpass. 64 points were selected by four groups. (3) Snow albedo by the total radiometer in BG-A. (4) The snow spectrum by ASD (Xinjiang Meteorological Administration) in BG-A11 Two files including raw data and preprocessed data were archived.
GE Chunmei, GU Juan, HAO Xiaohua, LI Hongyi, LI Zhe, LIANG Ji, MA Mingguo, SHU Lele, WANG Jianhua, WANG Xufeng, WU Yueru, XU Zhen, ZHU Shijie, LIANG Xingtao, LIU Zhigang, QU Wei, REN Jie, FANG Li, LI Hua, CHANG Cun, DOU Yan, MA Zhongguo, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn