This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
The data is an excel file, which includes four tables named as follows: Altay Snow DOC Time Series, Altay Snow Pit Data, Altay Snow MAC (absorption section) and Central Asia Mos Island Glacier BC, OC, DUST Data. Altay snow DOC table includes seven columns including sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 47 sample data. Altay snow pit table includes 8 columns including snow pit number, sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 238 sample data. Altay snow MAC table includes: sampling time, MAC and AAE, a total of three columns, and 46 sample data. The BC, OC and DUST data tables of glaciers in Central Asia's Muse Island include 8 columns: code no (sample number), Latitude (latitude), Longitude (longitude),/m a.s.l (altitude), snow type (snow type), BC, OC and DUST, which are analyzed by sampling time. There are 105 rows of data in total. Abbreviation explanation: DOC: Dissolved Organic Carbon MAC: mass absorption cross section BC: black carbon DUST: Dust OC: Organic carbon TN: Total Nitrogen PPM: ug g-1 (microgram per gram) PPb: ng g-1 (nanogram per gram)
ZHANG Yulan
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
MA Yuan
Based on long-term series Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products, daily snow cover products without data gaps at 500 m spatial resolution over the Tibetan Plateau from 2002 to 2021 were generated by employing a Hidden Markov Random Field (HMRF) modeling technique. This HMRF framework optimally integrates spectral, spatiotemporal, and environmental information together, which not only fills data gaps caused by frequent clouds, but also improves the accuracy of the original MODIS snow cover products. In particular, this technology incorporates solar radiation as an environmental contextual information to improve the accuracy of snow identification in mountainous areas. Validation with in situ observations and snow cover derived from Landsat-8 OLI images revealed that these new snow cover products achieved an accuracy of 98.31% and 92.44%, respectively. Specifically, the accuracy of the new snow products is higher during the snow transition period and in complex terrains with higher elevations as well as sunny slopes. These gap-free snow cover products effectively improve the spatiotemporal continuity and the low accuracy in complex terrains of the original MODIS snow products, and is thus the basis for the study of climate change and hydrological cycling in the TP.
HUANG Yan , XU Jianghui
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
This dataset is derived from the paper: Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15,4261-4279. ln this paper, the performance of the AVHRR GAC snowpack product in the Hindu Kush Himalayas is comprehensively evaluated for the first time on a long time scale (1982-2018) based on ground station data, Landsat data, and MODIS snowpack product, respectively, including the consistency of the accuracy/precision of the product over a long time series, and the consistency of the product with Landsat and MODIS snowpack data in terms of spatial distribution. The main factors affecting the accuracy of the AVHRR GAC snowpack product are also revealed.
WU Xiaodan
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
Supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19070100). Tao Che, the director of this program, who comes from Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS. They used machine learning methods combined with multi-source gridded snow depth product data to derive a long-time series over the Northern Hemisphere. Firstly, the applicability of artificial neural network (ANN), support vector machine (SVM) and random forest (RF) method in snow depth fusion are compared. It is found that random forest method shows strong advantages in snow depth data fusion. Secondly, using the random forest method, combined with remote sensing snow depth products such as AMSR-E, AMSR-2, NHSD and GlobSnow and reanalysis data such as ERA-Interim and MERRA-2. These gridded snow depth products and environmental factor variables are used as the input independent variables of the model. In situ observations of China Meteorological Station (945), Russia Meteorological Station (620), Russian snow survey data (514), and global historical meteorological network (41261) are used as reference truth to train and verify the model. The daily gridded snow depth dataset of the snow hydrological year from 1980 to 2019 (September 1 of the previous year to May 31 of the current year) is prepared on the cloud platform provided by the CASEarth. Since the passive microwave brightness temperature data from 1980 to 1987 is the data of every other day, there will be a small number of missing trips in the data during this period. Using the ESM-SnowMIP and independent ground observation data for verification, the quality of the fusion data set has been improved. According to the comparison between the ground observation data and the snow depth products before fusion, the determination coefficient (R2) of the fusion data is increased from 0.23 (GlobSnow snow depth product) to 0.81, and the corresponding root mean square error (RMSE) and mean absolute error (MAE) are also reduced to 7.7 cm and 2.7 cm.
CHE Tao, HU Yanxing, DAI Liyun, XIAO Lin
China's daily snow depth simulation and prediction data set is the estimated daily snow depth data of China in the future based on the nex-gdpp model data set. The artificial neural network model of snow depth simulation takes the maximum temperature, minimum temperature, precipitation data and snow depth data of the day as the input layer of the model, The snow depth data of the next day is used as the target layer of the model to build the model, and then the snow depth simulation model is trained and verified by using the data of the national meteorological station. The model verification results show that the iterative space-time simulation ability of the model is good; The spatial correlations of the simulated and verified values of cumulative snow cover duration and cumulative snow depth are 0.97 and 0.87, and the temporal and spatial correlations of cumulative snow depth are 0.92 and 0.91, respectively. Based on the optimal model, this model is used to iteratively simulate the daily snow depth data in China in the future. The data set can provide data support for future snow disaster risk assessment, snow cover change research and climate change research in China. The basic information of the data is as follows: historical reference period (1986-2005) and future (2016-2065), as well as rcp4.5 and rcp8.5 scenarios and 20 climate models. Its spatial resolution is 0.25 ° * 0.25 °. The projection mode of the data is ease GR, and the data storage format is NC format. The following is the data file information in NC Time: duration (unit: day) Lon = 320 matrix, 320 columns in total Lat = 160 matrix, 160 rows in total X Dimension: Xmin = 60.125; // Coordinates of the corner points of the lower left corner grid in the X direction of the matrix Y Dimension: Ymin = 15.125; // Coordinates of the corner points of the grid at the lower left corner of the Y-axis of the matrix
CHEN Hongju, YANG Jianping, DING Yongjian
Snow water equivalent (SWE) is an important parameter of the surface hydrological model and climate model. The data is based on the ridge regression algorithm of machine learning, which integrates a variety of existing snow water equivalent data products to form a set of snow water equivalent data products with continuous time series and high accuracy. The spatial range of the data is Pan-Arctic (45 N° to 90 N °), The data time series is 1979-2019. The dataset is expected to provide more accurate snow water equivalent data for the hydrological and climate model, and provide data support for cryosphere change and global change.
LI Hongyi, SHAO Donghang, LI Haojie, WANG Weiguo, MA Yuan, LEI Huajin
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
This data set comes from the book: glaciers in Hengduan Mountain area, which belongs to the series of scientific investigation in Hengduan Mountain Area of Qinghai Tibet Plateau. The chief editor is Li Jijun, the deputy chief editor is Su Zhen, and the guiding unit is Institute of geography, Chinese Academy of Sciences. The research team of the book is the Qinghai Tibet Plateau comprehensive research team of the Chinese Academy of Sciences, and the publishing house is Science Press. Due to abundant rainfall and deep snow cover in some areas of Hengduan Mountain. Avalanche, wind blown snow and abnormal snowfall have become a common natural disaster, which has caused great damage to the work and life of local residents. This book makes a detailed record of the snow disaster in Hengduanshan area. The data includes two workbooks and two pictures, which are the statistical table of snow damage status and damage degree, the regional characteristics of avalanche, the topographic cutting degree map of Western Sichuan, Northern Yunnan and southeastern Tibet, and the damage scope map of Hengduanshan avalanche.
LI Jijun
High Mountain Asia is the third largest cryosphere on earth other than the Antarctic and Arctic regions. The large amounts of glaciers and snow over the High Mountain Asia play an important role not only on global water cycle but also on water resources and ecology of the arid regions of central Asia. The snowline, as the lower boundary of the snow covered area at the end of melting season, its altitude changes can directly reflect the changes in snow and glaciers. The snowline altitude provides a possibility to rapidly obtain a proxy for their equilibrium line altitude (ELA) which in turn is an indicator for the glacier mass balance. In this dataset, the daily MODIS snow cover products from 2001 to 2019 are used as the main data source. The cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. The altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the hypsometric (area-elevation) curve. Finally, the 30km gridded dataset of snowline altitude in the High Mountain Asia during 2001-2019 is generated. This dataset can provide data support for the study of cryosphere and climate change over the High Mountain Asia.
TANG Zhiguang, DENG Gang, WANG Xiaoru
The dataset include ground-based passive microwave brightness temperature, multi-angle brightness temperature, ten-minute 4-component radiation and snow temperature, daily snow pit data and hourly meteorological data observed at Altay base station(lon:88.07、lat: 44.73)from November 27, 2015 to March 26, 2016. Daily snow pit parameters include: snow stratification, stratification thickness, density, particle size, temperature. These data are stored in five NetCDF files: TBdata. nc, TBdata-multiangle. nc, ten-minute 4 component radiation and snow temperature. nc, hourly meteorological and soil data. nc and daily snow pit data.nc. TBdata. nc is brightness temperature at 3 channels for both polarizations automatically collected by a six-channel dual polarized microwave radiometer RPG-6CH-DP. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. TBdata-multiangle.nc is 7 groups of multi-angle brightness temperatures at 3 channels for both polarizations. The contents include Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle. The ten-minute 4 component radiation and snow temperature.nc contains 4 component radiation and layered snow temperatures. The contents include Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm. The hourly meteorological and soil data.nc contains hourly weather data and layered soil data. The contents include Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm. The daily snow pit data.nc. is manual snow pit data. The observation time was 8:00-10:100 am local time. The contents include Year, month, day, snow depth, thickness_layer1, thickness_layer2, thickness_layer3, thickness_layer4, thickness_layer5, thickness_layer6, Long_layer1, Short_layer1, Long_layer2, Short_layer2, Long_layer3, Short_layer3, Long_layer 4, Short_layer4, Long_layer5, Short_layer5, Long_layer6, Short_layer 6, Stube, Snow shovel_0-10, Snow shovel _10-20, Snow shovel _20-30, Snow shovel _30-40, Snow shovel _40-50, Snow fork_5, Snow fork _10, Snow fork _15, Snow fork_20, Snow fork_25, Snow fork_30, Snow fork_35, Snow fork_40, Snow fork_45, Snow fork_50, shape1, shape2, shape3, shape4, shape5,
DAI Liyun
High Asia is very sensitive to climate change, and is a hot area of global change research. The changes of temperature and precipitation will be reflected in the freezing and thawing time of ice and snow. Satellite microwave remote sensing can provide continuous monitoring ability of ice and snow surface state in time and space. When a small part of ice and snow begins to melt, micro liquid water will also be reflected in active and passive microwave remote sensing signals. In the microwave band, the dielectric constant of ice and liquid water is very different, so it provides a basic theory for the microwave remote sensing monitoring of ice and snow melting. In the case of passive microwave, when ice and snow begin to melt and liquid water appears, its absorption and emissivity increase rapidly, so its emissivity, brightness temperature and backscatter coefficient will also change rapidly. This data set is the initial time of ice and snow melting in the high Asia region retrieved by using the satellite microwave radiometer and scatterometer observations from 1979 to 2018. The passive microwave remote sensing data are SMMR on satellite (1979-1987) and SSM / i-ssmis radiometer on DMSP (1988 present). The active microwave remote sensing data is the QuikSCAT satellite scatterometer (2000-2009).
Xiong Chuan, SHI Jiancheng, YAO Ruzhen, LEI Yonghui, PAN Jinmei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn