The data of triode ice core mainly comes from NOAA (National Oceanic and Atmospheric Administration, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core). The original data is mainly in text format, which is provided by relevant units and researchers voluntarily. The data mainly includes the original observation data such as oxygen isotope, greenhouse gas concentration, ice core age, etc., as well as the historical temperature, carbon dioxide concentration and methane concentration produced by the researchers according to the observation data. The data are mainly divided into Antarctic, Arctic, Greenland and the third polar region. The database includes drilling address, time, derivative products, corresponding observation site data, references and other elements. Derivative products include product name, type, time and other elements. The space location is divided into the south pole, the north pole and the third pole, including Alaska, Canada, Russia, Greenland and other regions. After sorting and post-processing the collected data, the ice core database is established by using the access database management system of Microsoft office. According to the Antarctic, Arctic, Greenland and the third pole, it is divided into four sub databases. The first table in each database is readme, which contains information and references of each data table.
YE Aizhong
This project is based on the data of bioactive elements such as Fe in miaergou ice core (94 ° 19 ′ e, 43 ° 03 ′ n, 4518 m) of the East Tianshan Mountains, and rebuilt the metal element history of 1956-2004. Data content: 1956-2004 ice core metal elements (including Fe, CD, Pb, as, Ba, Al, s, Mn, CO and Ni); data source, through ICP-MS test; data quality: blank sample is significantly lower than sample value, with better quality; data application results and prospects: data has been published, see Du, Z., Xiao, C., Zhang, W., Handley, M. J., mayewski, P. A., Liu, Y., & Li, X. (20. 19). Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956-2004. Atmospheric environment, 203, 121-130. It can provide comparative study of other ice cores in Central Asia.
Du Zhiheng
This data was reconstructed based on the history of perchlorate from 1956 to 2004 in Miaoergou ice core (94°19 'E,43°03 'N, 4518 m) in east Tianshan mountain. Data content: perchlorate from 1956 to 2004 (including: Cl-, NO3- and SO42-). Data was measured by ESI-MS/MS; Data quality: the blank sample was significantly lower than the sample values, and the quality was good. Data application result and prospect: The data has been published, the detailed information can be found in the published paper. Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment. Time range and resolution: 1956-2004 AD, and annual resolution.
Du Zhiheng
The data set of ice core-snow black carbon content on the Tibetan plateau (1950-2006) contains five (5) tables: 1 Xu et al. 2006 AG, 2 Xu et al. 2009 PNAS_Conc., 3 Xu et al. 2009 PNAS_flux, 4 Xu et al. 2012 ERL, 5 Wang et al. 2015 ACP. The data collection sites include the Meikuang glacier, Dongkemadi, Qiangyong, Kangwure, Naimona’nyi, Muztagata, Rongbuk, Tanggula Mountain, Ningjin Gangsang, Zuoqipu, and Glacier No. 1 at the headwaters of the Ürüqi River. The latitudes and longitudes of the collection locations, elevations and other information are marked in the data. The main indicators of the data are location, time, organic carbon (OC), elemental carbon (EC), black carbon (BC) content and flux. Location: latitude and longitude Time: year or date OC: organic carbon EC: elemental carbon BC: Black carbon Conc.: content, unit: ng g-1 Flux: flux, unit: mg m-2a-1 The data come from the following subjects. 1. National Program on Key Basic Research Project (973 Program):Temporal and Spatial Characteristics and Remote Sensing Modeling of Global Change Sensitive Factors; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 2. National Key Basic Research Program: The Response of Formation and Evolution on the Tibetan Plateau to Global Changes and Adaptation Strategy; Person in charge: Tandong Yao; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the Ministry of Science and Technology. 3. The General Program of National Natural Science Foundation of China: High-resolution Carbon Black Recording in Snow Ice of the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 4. The General Program of the National Natural Science Foundation of China: Extraction of Climate and Environment Information from Ice Core Encapsulated Gas on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 5. National Natural Science Foundation of China for Distinguished Young Scholars: Snow and Ice-Atmospheric Chemistry and Environmental Changes on the Tibetan Plateau; Person in charge: Baiqing Xu; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). 6. National Natural Science Foundation of China for Distinguished Young Scholars: Study on the Changes of Aerosol Emissions and Combustion in Human Activities in South Asia in the Past 100 Years; Person in charge: Mo Wang; Unit: Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Supported by the National Natural Science Foundation of China (NSFC). Observation methods: two-step heating method, thermal/optical carbon analysis method, and single-particle black carbon aerosol photometer.
XU Baiqing
Climate records obtained by most instruments are relatively short in time, which limits the study of climate change, necessitating the use of proxy data to extend records to the past. It was not until the late 1940s that atmospheric data of sufficient quality and spatial resolution were available to determine the main patterns of climate change such as the North American Pacific model and the Pacific Decadal Oscillation. The global ice cores are from the north and south poles and the third pole, and there are also mountain glaciers in Alaska. The ice core data obtained in that area are of great significance for revealing the climate in North America and climate change in the Arctic regions at both low and high latitudes. The physical meaning of each variable: First column: time; second column: accumulation rate data; third column: oxygen isotope data value
Du Zhiheng
The Greenland Ice Sheet Project Two (GISP2), initiated by the United States, has provided detailed oxygen isotope data for a time span of more than 100,000 years, covering almost the entire glacial-interglacial cycle. These data include the oxygen isotope changes from 818 to 1987, with a clear record showing that the Little Ice Age was the coldest period of the past 1000 years. Fluctuating warming occurred from 1850 to 1987, and the changes were consistent with those of GRIP, NGRIP and the latest NEEM ice core obtained in Greenland. This finding indicated that the snow and ice records from the Greenland ice sheet were highly consistent. The physical meaning of each variable is as follows: First column: ice core depth; second column: oxygen isotope value; third column: time
Du Zhiheng
From 1000 AD to the present, the concentration of methane in the atmosphere has increased significantly in the ice cores of the Antarctic and Arctic. These data came from the Tasmanian laboratory of Australia, where the high resolution data were obtained by using wet extraction of ice core samples, and the same measurement and calibration procedures were applied to all samples. The results are consistent with the results of internationally renowned ice core greenhouse gas laboratories such as the University of Bern, the University of Copenhagen and the University of Ohio. The physical meaning of each variable: First column: time; second column: methane concentration value
Du Zhiheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn