This dataset is land surface phenology estimated from 16 days composite MODIS NDVI product (MOD13Q1 collection6) in the Three-River-Source National Park from 2001 to 2020. The spatial resolution is 250m. The variables include Start of Season (SOS) and End of Season (EOS). Two phenology estimating methods were used to MOD13Q1, polynomial fitting based threshold method and double logistic function based inflection method. There are 4 folders in the dataset. CJYYQ_phen is data folder for source region of the Yangtze River in the national park. HHYYQ_phen is data folder for source region of Yellow River in the national park. LCJYYQ_phen is data folder for source region of Lancang River in the national park. SJY_phen is data folder for the whole Three-River-Source region. Data format is geotif. Arcmap or Python+GDAL are recommended to open and process the data.
WANG Xufeng
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from October 24 to December 31, 2018. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2018. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan,Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The meteorological data were missing during Aug. 29 to Oct.18 because of unstable power supply due to battery box flooding; The wind speed and direction profile data were rejected because of sensor failure; The precipitation data were rejected because of program error; The air humidity data before Mar. 2 were rejected due to program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
The monthly average vegetation index data of Heihe River Basin is based on MODIS 1 km and 250 m NDVI products. From 250 m products, the grid value of Heihe River Basin is proposed as precision control, and the 1 km product is modified by HASM method. The monthly average vegetation index of Heihe River Basin from 2001 to 2011 was obtained by fusing multi-source NDVI data using HASM method. Resolution: 1km * 1km The average precipitation data set of Heihe River Basin adopts the data information of 21 meteorological conventional observation stations in Heihe River Basin and its surrounding areas and 13 national reference stations around Heihe River basin provided by Heihe planning data management center. The daily precipitation data of each station from 1961 to 2010 is calculated. If the coefficient of variation is greater than 100%, the daily precipitation distribution trend can be obtained by using the geographic weighted regression to calculate the relationship between the station and the geographical terrain factors; if the coefficient of variation is less than or equal to 100%, the relationship between the station precipitation value and the geographical terrain factors (longitude, latitude, elevation) is calculated by ordinary least square regression, and the daily precipitation score is obtained HASM (high accuracy surface modeling method) was used to fit and modify the residual error after removing the trend. Finally, the trend surface results and residual correction results are added to get the annual average precipitation distribution of Heihe River Basin from 1961 to 2010. Time resolution: annual average precipitation from 1961 to 2010. Spatial resolution: 500M.
YUE Tianxiang, ZHAO Na
We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.
HUANG Guanghui
This dataset includes 5 sub-datasets obtained from measurements in the flux observing matrix at observing site No.15 (the Daman superstation) and 13. Specifically, the sub-datasets include the following: (1) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic and flux ratio measurements from site No.15 from 27 May to 21 September in 2012, (2) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 from 27 May to 21 September 2012, (3) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic ratios at site No.13 when airborne surveys occurred, and (4) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No.13 and 15 when airborne surveys occurred, (5) a dataset that contains the ratios of evaporation and transpiration to evapotranpiration at site No.15. The experiment area was located in a corn cropland in the Daman irrigation district of Zhangye, Gansu Province, China. The positions of observing sites No.15 and 13 were 100.3722° E, 38.8555° N and 100.3785° E, 38.8607° N, respectively, with an elevation of 1552.75 m above sea level. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 were continuously measured using an in situ observation system. The system consisted of an H218O, HDO and H2O analyzer (Model L1102-i, Picarro Inc.), a CTC HTC-Pal liquid auto sampler (LEAP Technologies) and a multichannel solenoid valve (Model EMT2SD8 MWE, Valco Instruments CO. Inc.). The heights of the two intakes were 0.5 and 1.5 m above the corn canopy. The water vapor D/H and 18O/16O isotopic ratio analyzer recorded signals at 0.2 Hz; data were recorded for 2 minutes per intake. The data were block-averaged to hourly intervals. The sampling frequency of soil and xylem at site No. 15 was 1-3 days. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.13 were measured using a cold traps/mass spectrometer. The sampling frequency of atmospheric water vapor, soil water and xylem water at site No.13 was the same as that of the airborne surveys. Briefly, the Picarro analyzer measurements were calibrated during every 3 h switching cycle using a two-point concentration interpolation procedure in which the water vapor mixing ratio was dynamically controlled to track the ambient water vapor mixing ratio. Possible delta stretching effects were not considered. A schematic diagram of the Picarro analyzer and its operation principles and calibration procedure are described elsewhere in the literature (Huang et al., 2014; Wen et al. 2008, 2012). The dataset of atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Number (available record number), δD for r1 (δD for the lower intake, ‰), δD for r2 (δD for the higher intake, ‰), δ18O for r1 (δ18O for the lower intake, ‰), δ18O for r2 (δ18O for the higher intake, ‰), vapor mixing ratio for r1 (vapor mixing ratio for the lower intake, mmol/mol), vapor mixing ratio for r2 (vapor mixing ratio for the higher intake, mmol/mol), δET_D (δD of evapotranspiration, ‰), and δET_18O (δ18O of evapotranspiration, ‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; soil with male corns (F)=3; Xylem=4), δD (‰), and δ18O (‰). The dataset for the ratio of soil evaporation and transpiration to the evapotranspiration at site 15 includes the following variables: Timestamp (time, timestamp without time zone), E/ET (ratio of soil evaporation to the evapotranspiration, %), and T/ET (ratio of transpiration to the evapotranspiration, %). The mean (±one standard deviation) ratio of transpiration to evapotranspiration was 86.7±5.2% (the range was 71.3 to 96.0%). The mean (±one standard deviation) ratio of soil evaporation to the evapotranspiration was 13.3 ±5.2% (the range was 4.0 to 28.7%). The dataset of atmospheric water vapor D/H and 18O/16O isotopic ratio at site No. 13 when airborne surveys occurred includes the following variables: Timestamp1 (start time, timestamp without time zone), Timetamp2 (end time, timestamp without time zone), Height (observation height, cm), δD (‰), and δ18O (‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No. 13 and 15 when airborne surveys occurred include the following variables, Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; Xylem=4), δD (‰), δ18O (‰), and Location (observing site 13 or 15) . The missing measurements were replaced with -6999. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Wen et al. (2016) (for data processing) in the Citation section.
WEN Xuefa, LIU Shaomin, LI Xin
The EC150 open circuit eddy covariance observation system was set up in the typical Populus euphratica community near ulantuge of Ejina oasis in the lower reaches of Heihe River. The water and heat fluxes of Populus euphratica community from July 2013 to September 2014 were systematically observed.
CHEN Yaning
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.
CHEN Ling, HE Tao, REN Huazhong, REN Zhixing, YAN Guangkuo, ZHANG Wuming, XU Zhen, LI Xin, GE Yingchun, SHU Lele, JIANG Xi, HUANG Chunlin, GUANG Jie, LI Li, LIU Sihan, WANG Ying, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, CHEN Shaohui, LIANG Wenguang, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun, YANG Tianfu
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature by the handheld radiometer (BNU) in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (2) The component temperature of maize and wheat by the handheld radiometer in Yingke oasis maize field, Yingke wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The radiative temperature and the canopy multi-angle radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (2 instruments for maize canopy), Huazhaizi desert maize field (only one for maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). The thermal infrared remote sensing calibration was carried out in the resort plot. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (5) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (6) Reflectance spectra of Yingke oasis maize field (350-2500nm, from Institute of Remote Sensing Applications) and resort calibration site (350-2500nm, from Beijing Univeristy) by ASD (Analytical Sepctral Devices); BRDF by the self-made observation platform. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (7) Atmospheric parameters at the resort calibration site by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Soil moisture (0-40cm) by the cutting ring, the soil temperature by the thermocouple thermometer, roughness by the self-made roughness board and the camera in Huazhaizi desert No. 1 plot. Sample points were selected every 30m along the diagonals. Data were all archived in Excel format. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (10) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Word. LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format of May 31.
CHAI Yuan, CHEN Ling, HE Tao, KANG Guoting, QIAN Yonggang, REN Huazhong, REN Zhixing, WANG Haoxing, ZHANG Wuming, ZOU Jie, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, LIANG Wenguang, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Radiative temperature of maize, wheat and the bare land (in Yingke oasis maize field), vegetation and the bare land (Huazhaizi desert No. 2 plot) by the thermal cameras at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format and radiative files are stored in Excel format. . (3) Photosynthesis by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (4) Ground object reflectance spectra in Yingke oasis maize field, Huazhaizi maize field, Huazhaizi desert No. 1 and 2 plots, by ASD FieldSpec (350~2500 nm) from Institute of Remote Sensing Applications (IRSA), CAS. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt format. (5) The radiative temperature in Huazhaizi desert No. 2 plot by the handheld infrared thermometer (BNU and IRSA). Raw data, blackbody calibrated data and processed data (in Excel format) were all archived. (6) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (7) The radiative temperature of the maize canopy by the automatic thermometer (FOV: 10°; emissivity: 0.95) mearsued at nadir with an time intervals of 1s in Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived as Excel files. (8) Maize albedo from two shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
REN Huazhong, WANG Tianxing, YAN Guangkuo, LI Li, LI Hua, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, YANG Guijun, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire VNIR, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Emissivity of maize and wheat in the Yingke oasis by portable 102F (2.0~25.0um) from BNU. Warm blackbody, cold blackbody, the target and the au-plating board of known emissivity. Raw data of those four measurements were archived in *.WBX, *.CBX, *.SAX and *.CBX Besides, the spectral radiance and emissivity calculated by 102F were archived in *.RAX and *.EMX, respectively. Meanwhile, the final spectral emissivity of targets were also calculated by TES (ISSTES). (3) LAI of mazie and wheat in Yingke oasis maize field. The maximum leaf length and width of leaves were measured. Data were archived as Excel files of Jul. 2. (4) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in MS Office Word format. (5) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), measured at nadir with time intervals of one second in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the background bare soil). Raw data, blackbody calibrated data and processed data were all archived as Excel files. (6) the component temperature in Yingke oasis maize field (by the handheld radiometer and the thermal image from BNU), Yingke oasis wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in MS Office Word format), recorded data and the blackbody calibrated data (in Excel format). (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the observation height). Data were archived in MS Office Excel format. (8) the radiative temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (9) ground object reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350~2 500 nm) from BNU. The vertical canopy observation and the line-transect observation were used. The data included raw data (from ASD, read by ViewSpecPro), recorded data and processed data on reflectance (in Excel format).
CHEN Ling, GUO Xinping, REN Huazhong, WANG Tianxing, XIAO Yueting, YAN Guangkuo, CHE Tao, GE Yingchun, GAO Shuai, LI Hua, LI Li, LIU Sihan, SU Gaoli, WU Mingquan, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, SHEN Xinyi, YU Fan, YANG Guijun, Liu Liangyun
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 7, 2008. Observation items included: (1) the radiative temperature by the thermal camera (Institute of Remote Sensing Applications) of maize, wheat and the bare land of Yingke oasis maize field at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format, and blackbody calibrated data and processed data were all archived as Excel files. (2) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-1603nm) from Institute of Remote Sensing Applications (CAS). The grey board and the black and white cloth were also used for calibration on the CCD camera. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) the component temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (5) the radiative temperature by the handheld radiometer (emissivity = 1.0) in Yingke oasis maize field (for the canopy mean temperature), Huazhaizi desert maize field (for the transect temperature), Zhangye airport (the black and white cloth for calibration) and Huazhaizi desert No. 2 plot (the diagonal radiative temperature and the radiative temperature of 30m*30m subplot). The component temperature was also measured. The data included raw data (in Word format), recorded data and the blackbody calibrated data (as Excel files). (6) The air temperature (°C) , the soy bean leaf temperature (°C) and the maize leaf temperature (°C) by SPAD (from Institute of Remote Sensing Applications (CAS)) in Yingke oasis maize field. Besides, spectrum, photosynthesis, fluorescence and chlorophyll were measured as well. (7) The leaf reflectance spectra ASD (serial number: 64831) and 50% grey board from Institute of Remote Sensing Applications (CAS). The spectral DN was changed into radiance based on the 50% grey board calibration data and calibration lamp data, which could further be transformed into Excel format. Moreover, the solar radiance=the reference board radiance/the reference reflectance. (8) The leaf fluorescence by ImagingPam from Beijing Academy of Agriculture and Forestry Sciences. YII = (Fm'-F)/Fm' was applied for caculation, F indicating fluorescence before saturating flash light, Fm' the maximum fluorescence before saturating flash light, and YII the quantum yield of photosystem II. Data were archived in pim and could be read by ImagingPam, which can be downloaded from http://www.zealquest.com. (9) The leaf photosynthesis by LI-6400. (10) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s in Yingke oasis maize field and Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (11) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (12) Atmospheric parameters near Daman Water Management office by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, REN Huazhong, WANG Tianxing, YAN Guangkuo, HAO Xiaohua, WANG Shuguo, LI Li, LI Hua, LIU Sihan, SU Gaoli, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, LI Xinhui, YU Fan, ZHU Xiaohua, YANG Guijun, CHENG Zhanhui, Liu Liangyun
The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.
SONG Yaoxuan, LIU Zhangwen
SPAC system is a comprehensive platform for observation of plant transpiration water consumption and environmental factors. In this project, a set of SPAC system is set up in the Alxa Desert eco hydrological experimental study. The main observation data include temperature, relative humidity, precipitation, photosynthetic effective radiation, etc. the sampling frequency is one hour. This data provides basic data support for the study of plant transpiration water environmental response mechanism.
SI Jianhua
This data set is the precipitation characteristic data in the precipitation interception data of alpine shrub in hulugou basin in the upper reaches of Heihe River in 2012. The observation date is from October 2, 2011 to September 24, 2012. The observation contents include precipitation, precipitation duration, precipitation intensity and frequency of throughfall. The observation data are recorded by self recording rain gauge and artificial rain gauge.
SONG Yaoxuan, LIU Zhangwen
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 22, 2008. Observation items included: (1) Albedo by the shortwave radiometer in Huazhaizi desert No. 2 plot. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (2) BRDF of maize in Yingke oasis maize field by ASD (350-2 500 nm) from Beijing University and the observation platform of BNU make. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°; BRDF in Huazhaizi desert No. 2 plot by ASD from Institute of Remote Sensing Applications (CAS) and the observation platform of its own make, whose maximum height was 2m above the ground with the zenith angle -70°~70°. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, GUO Xinping, REN Huazhong, ZOU Jie, LIU Sihan, ZHOU Chunyan, FAN Wenjie, TAO Xin
The dataset of ground truth measurements synchronizing with ASTER was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 28, 2008. Observation items included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Photosynthesis by LI-6400. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (5) the radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 using ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), 3 for maize canopy, the bare land and wheat canopy in Yingke oasis maize field, one for maize canopy in Huazhaizi desert maize field, and 2 for vegetation and the desert bare land in Huazhaizi desert No. 2 plot,at nadir at a time interval of one second. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format. (9) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (10) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), Huazhaizi desert maize field (the transect observation) and Huazhaizi desert No. 2 plot (the diagonal observation) by the handheld infrared thermometer (BNU and Institute of Remote Sensing Applications). Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived.
CHAI Yuan, CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jianhua, SHU Lele, LI Li, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, ZHOU Mengwei, TAO Xin, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurements synchronizing with EO-1 Hyperion was obtained in the Yingke oasis foci experimental area from Sep. 5 to Sep. 10, 2007 during the pre-observation period. It was carried out by the 3rd and 2nd sub-projects of CAS’s West Action Plan along Zhangye city-Yingke oasis-Huazhaizi, and on the very day of 10, one scene of Hyperion was captured. sampling plot time north latitude east longitude elevation notes 1 9:58 38°53′53.2″ 100°26′09.7″ 1500 cauliflower land east to the road 2 10:51 38°52′39.8″ 100°25′33.1″ 1510 cabbage land east to the road 3 11:35 38°52′39.0″ 100°25′34.6″ 1510 east to No. 2 sampling plot, maize and intercropping wheat reaped 4 12:24 38°51′53.0″ 100°25′08.0″ 1510 maize seed 5 13:08 38°51′54.2″ 100°25′09.5″ 1520 north to No. 4 sampling plot, maize and intercropping wheat reaped 6 14:40 38°51′23.5″ 100°24′45.0″ 1510 west to the road, maize seed, serious blights (red spider) 7 15:40 38°49′26.6″ 100°23′23.7″ 1540 intercrop land of sea buckthorn and beet 8 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land, rich of amaranth weeds 9 16:18 38°49′06.4″ 100°23′30.8″ 1540 beet land 10 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land with less weeds 11 10:30 38°48′28.3″ 100°24′11.4″ 1540 sea buckthorn seedling land west to the road 12 11:24 38°48′09.3″ 100°24′10.1″ 1550 sun flower land east to the road, intercropping wheat reaped 13 12:38 38°46′16.3″ 100°23′14.2″ 1600 dry rice land 14 12:45 38°46′16.2″ 100°23′14.0″ 1600 rape land 15 12:54 38°46′15.6″ 100°23′13.8″ 1600 buckwheat land 16 14:52 38°45′55.5″ 100°23′00.1″ 1610 maize (without intercrop) 17 15:28 38°45′57.5″ 100°22′28.3″ 1630 maize (without intercrop) 18 16:20 38°43′17.3″ 100°22′53.4″ 1730 gobi (Bassia dasyphylla and margarite dominate) 19 17:40 38°42′31.8″ 100°22′56.8″ 1780 gobi (Bassia dasyphylla and Sympegma regelii dominate) 20 10:27 38°36′25.1″ 100°20′33.2″ 2260 wheatgrass dominates 21 11:10 38°36′24.4″ 100°20′38.1″ 2260 abandoned composite land 22 11:30 2260 near site 22, wheatgrass and composite cenosis 23 bare land 24 13:09 38°38′46.3″ 100°23′08.5″ 2030 alfalfa land 25 14:39 38°44′30.8″ 100°22′41.0″ 1660 poplar 26 9:47 38°58′11.4″ 100°26′18.3″ 1460 rice land Observation items included: (1) quadrat surveys (2) LAI by LAI-2000 (3) ground object reflectance spectra by ASD FieldSpec Pro (350-2500nm)from Gansu Meteorological Administration (4) the land surface temperature and the canopy radiative temperature by the hand-held thermal infrared sensor (5) the photosynthesis rate by LI-6400 (6) the radiative temperature by ThermaCAM SC2000 (7) Atmospheric parameters by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S codes (8) chlorophyll consistency by portable SPAD Those provide reliable ground data for developing and validating retrieval meathods of biophysical parameters from EO-1 Hyperion images.
MA Mingguo, LI Xin, SU Peixi, DING Songchuang, GAO Song, YAN Qiaodi, ZHANG Lingmei, WANG Xufeng, Qian Jinbo, BAI Yunjie, HAO Xiaohua, Liu Qiang, Wen Jianguang, XIN Xiaozhou, WANG Xiaoping, HAN Hui
The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 16, 2008. Observation items included: (1) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (2) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The reflectance spectra by ASD through the vertical canopy observation and the transect observation in Yingke oasis maize field (350-2500nm , from BNU), and Huazhaizi desert maize field and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). Raw data, blackbody calibrated data and processed data were all archived in Excel format. (6) Photosynthesis of maize and wheat of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (7) Soil moisture in Yingke oasis maize field. The sample was fetched by the soil auger and weighed by the scales before and after drying. Data were archived in Excel format. (8) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
CHEN Ling, REN Huazhong, ZHOU Hongmin, CAO Yongpan, SHU Lele, WU Yueru, XU Zhen, LI Li, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, TAO Xin, FENG Lei, LIANG Wenguang, YU Fan, WANG Dacheng, YANG Guijun, LI Xiaoyu, Liu Liangyun
The dataset of ground truth measurement synchronizing with Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 20, 2008. Observation items included: (1) LAI in Yingke oasis maize field. The maximum leaf length and width of each alfalfa and barley were measured. Data were archived in Excel format. (2) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) the radiative temperature by 3 handheld radiometers in Yingke oasis maize field (Institute of Remote Sensing Applications, BNU and Institute of Geographic Sciences and Natural Resources respectively, the vertical canopy observation and the transect observation), and by 3 handheld infrared thermometers in Huazhaizi desert No. 2 plot (the vertical vegetation and bare land observation). The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (4) the radiative temperature of maize, wheat and the bare land of Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (5) Photosynthesis of maize, wheat and the bare land of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (6) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (7) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Coverage fraction of Reaumuria soongorica by the self-made coverage instrument and the camera (2.5m-3.5m above the ground) in Huazhaizi desert No. 2 plot. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS data was used for the location and the technology LAB was used to retieve the coverage fractionof the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the vegetation iamge and coverage (by .exe). (9) The radiative temperature of Reaumuria soongorica canopy and the bare land by 2 fixed automatic thermometers (FOV: 10°; emissivity: 0.95) in Huazhaizi desert No. 2 plot, observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were all archived in Excel format.
CHAI Yuan, CHEN Ling, KANG Guoting, LI Jing, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jindi, XIAO Zhiqiang, YAN Guangkuo, SHU Lele, GUANG Jie, LI Li, Liu Qiang, LIU Sihan, XIN Xiaozhou, ZHANG Hao, ZHOU Chunyan, TAO Xin, YAN Binyan, YAO Yanjuan, TIAN Jing, LI Xiaoyu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn