The ground-based observation dataset of aerosol optical properties over the Tibetan Plateau was obtained by continuous observation with a Cimel 318 sunphotometer, involving two stations: Qomolangma Station and Nam Co Station. These products have taken the process of cloud detection. The data cover the period from January 1, 2021 to December 31, 2021, and the time resolution is daily. The sunphotometer has eight observation channels from visible light to near infrared, and the central wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm, respectively. The field of view angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. Six bands of aerosol optical thickness can be obtained from direct solar radiation, and the accuracy is estimated to be 0.01-0.02. Finally, AERONET unified inversion algorithm was used to obtain the aerosol optical thickness, Ångström index, aerosol particle size distribution, single scattering albedo, phase function, complex refraction index and asymmetry factor.
CONG Zhiyuan
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-MODIS Products-Land Use Data in Northwest China (2000-2010) 1. Data summary: Land Use Data in Northwest China (2000-2010) 2. Data content: Land use data of Shiyanghe River Basin, Heihe River Basin and Shulehe River Basin in Northwest China from 2000 to 2010 obtained by MODIS
WANG Zhongjing
The research project on land surface data assimilation system in western China belongs to the major research plan of "environment and ecological science in western China" of the national natural science foundation. the person in charge is Li Xin, researcher of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. One of the data collected in this project is the reanalysis data of surface climate factors in western China in 2002. This data set is generated based on the daily 1 × 1 provided by the National Environmental Prediction Center (NCEP). However, the re-analysis of the data has the following problems: (1) the temporal and spatial resolution is not high enough (the horizontal resolution is 1 degree and the time is 6 hours); (2) The low-level errors in plateau areas are large; (3) The data are standard isosurface data and need interpolation. The 2002 reanalysis data set of surface climate elements in western China was generated by combining NCEP reanalysis data and MM5 model by Dr. Longxiao and Professor Qiu Chongjian of Lanzhou University using Newton relaxation data assimilation method (Nudging), including 10m horizontal and vertical wind speed (m/s), 2m air temperature (k), 2m mixing ratio, surface pressure (Pa), upstream and downstream short wave and long wave radiation (w/m2), convective precipitation and large scale precipitation (mm/s) at 0.25 degree per hour throughout 2002. I. preparation background The quality of the driving data seriously affects the ability of the land surface model to simulate the land surface state, so a very important component of the land surface modeling research is the driving data used to drive the land surface model. No matter how realistic these models are in describing the surface process, no matter how accurate the boundary and initial conditions they input, if the driving data are not accurate, they cannot get the results close to reality. Land surface models are so dependent on the quality of externally provided data that any error in these externally provided data will seriously affect the ability of land surface models to simulate soil moisture, runoff, snow cover and latent heat flux. These externally provided data include: precipitation, radiation, temperature, wind field, humidity and pressure. The 2002 reanalysis data set of surface climate elements in western China uses Newton relaxation data assimilation method (Nudging) to combine NCEP reanalysis data and MM5 model to generate driving data with higher spatial and temporal resolution suitable for complex terrain in western China. Second, the basic parameters of the operation mode 1. Using the US PSU/NCAR mesoscale model MM5 as a simulation model; The selection of simulation grid domain: center (32°N, 90°E), grid distance of 36km, number of horizontal grid points of 131*151, vertical resolution of 25 layers, and mode top of 100hPa;; 2. The data used for initialization are 1 * 1 GRIB grid data of NCEP in the United States. 3. The time step is 120s. Third, the physical process 1. physical process treatment of cloud and precipitation: Grell cumulus cloud parameterization scheme is adopted for sub-grid scale precipitation, and Reisner mixed phase microphysical explicit scheme is adopted for distinguishable scale precipitation; 2. MRF parameterization scheme is adopted for planetary boundary layer process. 3. the radiation process adopts CCM2 radiation scheme. IV. File Format and Naming It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: 2002***&.forc, where * * * is Julian day and 2002***& is time (in hours), where. forc is the file extension. V. data format Stored in binary floating point type, each data takes up 4 bytes.
LONG Xiao, QIU Chongjian
The experimental project of vegetation degradation mechanism and reconstruction in Yuanjiang dry-hot valley in Yunnan belongs to the major research program of "Environmental and Ecological Science in Western China" of the National Natural Science Foundation. The principal is researcher Cao Kunfang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The project runs from January 2004 to December 2007. Data collected for this project include: 1. Excel table of multi-year average temperature and rainfall in Yuanjiang dry-hot valley (1961-2004), with attribute fields including monthly average temperature and monthly average rainfall. 2. excel table of annual average temperature (1750-2006) in the middle of Hengduan Mountain in China based on tree ring, with attribute fields including year and reconstructed average temperature. 3. excel table of summer temperatures (1750-2006) in the central Hengduan Mountains in southern China based on tree rings. The attribute fields include the year and the reconstructed average temperature in summer (April-September). 4. excel table of drought index (1655-2005) in central Hengduan Mountains of China based on tree rotation, with attribute fields including year and reconstruction of drought index in spring (March-May). 5. pdf file of growth dynamic graph of leaves and branches. it records the growth dynamic trend line and leaf dynamic trend graph of plants with s-type, f-type, intermediate-type and S+SD-type branches from March 22, 2004 to April 8, 2005. 6.32 Phenological Summary Tables of Woody Plants (word Document: Specific Name, Number of Observed Plants/Branches, Type of Branch Extension, Leaf Phenology, Length of Current Year Branches (cm), Total Leaves on Branches, Leaf Area (cm2), Non-leaf Period (Months), Flowering Period, Fruit Ripening Period and Fruit Type) 7. Seasonal Changes of Relative Water Content of Plant Leaves in Yuanjiang Dry-hot Valley (March 2003-February 2004) Excel Table 8. Seasonal Changes of Photosynthesis of 6 Representative Plants in Yuanjiang Dry-hot Valley (Maximum Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency, Maximum Subefficiency of photosystem II) excle Table (2003-2005) 9. excle Table of Long-term Water Use Efficiency (Isotope) Data of Representative Plants in Yuanjiang Dry-hot Valley (Water Use Efficiency in Dry and Wet Seasons of Shrimp Flower, Red-skin Water Brocade Tree, Three-leaf Lacquer, Phyllanthus emblica, Pearl Tree, Dried Sky Fruit, Cyclobalanopsis glauca, West China Small Stone Accumulation, Geranium, Tiger thorn, Willow and Pigexcrement Bean) 10. word Document of List of Plants in Mandan Qianshan, Yuanjiang
CAO Kunfang
This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).
HUANG Xiaodong
This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
In the mid-latitude region of Asia, the southeastern region is humid and affected by monsoon circulation (thus, it is referred to as the monsoon region), and the inland region is arid and controlled by the other circulation patterns (these areas include the cold and arid regions in the northern Tibetan Plateau, referred to as the westerly region). Based on the generalization of the climate change records published in recent years, the westerly region was humid in the mid-late Holocene, which was significantly different from the pattern of the Asian monsoon in the early-middle Holocene. In the past few millennia, the westerly region was arid during the Medieval Warm Period but relatively humid during the Little Ice Age. In contrast, the oxygen isotope records derived from a stalagmite in the Wanxiang Karst Cave showed that the monsoon precipitation was high in the Medieval Warm Period and low during the Little Ice Age. In the last century, especially in the last 50 years, the humidity of the arid regions in the northwest has increased, while the eastern areas of northwestern and northern China affected by the monsoon have become more arid. Moreover, in the northern and southern parts of the Tibetan Plateau, which are affected by the westerlies and the monsoon, respectively, the precipitation changes on the interdecadal and century scales have also shown an inverse phase. Based on these findings, we propose that the control zone of the westerly belt in central Asia has different humidity (precipitation) variation patterns than the monsoon region on every time scale (from millennial to interdecadal) in the modern interglacial period. The integrated research project on Holocene climate change in the arid and semi-arid regions of western China was a major research component of the project Environmental and Ecological Science for West China, which was funded by the National Natural Science Foundation of China. The leading executive of the project was Professor Fahu Chen from Lanzhou University. The project ran from January 2006 to December 2009. The data collected by the project include the following: 1. The integrate humidity data over the Holocene in the arid regions of Central-East Asia and 12 lakes (11000-0 cal yr BP): including Lake Van, Aral Sea, Issyk-Kul, Ulunguhai Lake, Bosten Lake, Barkol Lake, Bayan Nuur, Telmen Lake, Hovsgol Nuur, Juyan Lake, Gun Nuur and Hulun Nuur. 2. The integrated humidity data over the past millennium in the arid regions of Central-East Asia and at five research sites (1000-2000): including Aral Sea, Guliya, Bosten Lake, Sugan Lake, and the Badain Juran desert. Data format: excel table.
CHEN Fahu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn