Data content: money supply (2012-2021) and assets and liabilities of financial institutions (2007-2020) Data source and processing method: The original data of the third pole (China) banks and currencies from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the data set of the third pole (China) banks and currencies from 2012 to 2021 was obtained through data sorting, screening and cleaning. The data started from 2012 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
Data content: price index_ Consumer Price Index (CPI) (2009-2022) Data source and processing method: The original data of the third pole (China) price index economy from 2015 to 2022 were obtained from the official website of the World Bank and Sina.com, and the economic data set of the third pole (China) price index from 2009 to 2022 was obtained through data collation, screening and cleaning. The data started from 2009 to 2022 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
Data content: annual statistics of gross domestic product (GDP) (1991-2021), domestic assets and liabilities data (2011-2020) and domestic input and output data (2012-2018) Data source and processing method: The original macroeconomic data of the third pole (China) from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the macroeconomic data set of the third pole (China) from 1991 to 2021 was obtained through data sorting, screening and cleaning. The data was stored in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
Data content: foreign economy and trade_ Total import and export of goods (1991-2021) Data source and processing method: The original data of foreign trade and investment of the third pole (China region) from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the data set of foreign trade and investment of the third pole (China region) from 1991 to 2021 was obtained through data sorting, screening and cleaning. The data started from 1991 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
This data set is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including ecosystem net ecosystem productivity (NEP), total primary productivity (GPP) and ecosystem respiration (ER) data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
This dataset is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including net ecosystem productivity (NEP), total primary productivity (GPP), ecosystem respiration (ER), evapotranspiration, latent heat, sensible heat, air temperature, relative humidity, wind speed, soil temperature, soil moisture and other data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
Data content: Industrial added value of national economy (monthly) (2010-2021) Data source and processing method: obtain the original data of the third pole (China) industrial economy in 2010-2021 from the official website of the World Bank and Sina.com, and obtain the industrial economy data set in 2010-2021 (China) through data sorting, screening and cleaning. The data starts from 2010 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as social, industrial and economic data
FU Wenxue
The resilience of health care development in countries along the Belt and Road reflects the level of resilience of health care development in the countries along the Belt and Road, and the higher the value of the data, the stronger the resilience of health care development in the countries along the Belt and Road. The World Bank statistical database was used for the preparation of the health resilience data. Based on the year-on-year data of these four indicators, and taking into account the year-on-year changes of each indicator, the product of resilience in the development of healthcare conditions was prepared through comprehensive diagnosis based on sensitivity and adaptability analysis. "The Resilience in Health Care Development dataset for countries along the Belt and Road is an important reference for analysing and comparing the current resilience in health care development in each country.
XU Xinliang
The development resilience of social employment in the countries along the Belt and Road reflects the level of resilience of social employment in the countries along the Belt and Road, and the higher the value of the data, the stronger the development resilience of social employment in the countries along the Belt and Road. The data product of social employment development resilience is prepared by referring to the World Bank statistical database, using the year-by-year data of the ratio of total unemployment to total labour force in the countries along the Belt and Road from 2000 to 2019, and based on sensitivity and adaptability analysis by considering the year-by-year changes of each indicator. A comprehensive diagnostic was carried out to generate a resilience product for the development of social employment. "The data set on the resilience of social employment development in the countries along the Belt and Road is an important reference for analysing and comparing the resilience of the current population growth in each country.
XU Xinliang
The resilience of education in Belt and Road countries reflects the level of resilience of education in the countries along the Belt and Road, and the higher the value, the stronger the resilience of education in the countries along the Belt and Road. The data on the resilience of educational conditions are prepared by referring to the World Bank's statistical database, using year-on-year data on four indicators - literacy rate, education expenditure, secondary school enrolment rate and tertiary enrolment rate - for countries along the Belt and Road from 2000 to 2019, and taking into account the year-on-year changes in each indicator. Based on the sensitivity and adaptability analysis, a comprehensive diagnosis was carried out to generate a resilience product for the development of education conditions. "The data set on the resilience of educational conditions in countries along the Belt and Road is an important reference for analysing and comparing the current resilience of educational conditions in each country.
XU Xinliang
The GDP per capita growth resilience dataset for countries along the Belt and Road is a comprehensive reflection of the level of GDP per capita growth resilience of each country. The GDP per capita growth resilience dataset was prepared with reference to the World Bank's statistical database, using year-on-year data on GDP per capita (constant 2010 US dollars) for countries along the Belt and Road from 2000 to 2019, and based on sensitivity and adaptability analysis, taking into account the year-on-year changes of each indicator. Through a comprehensive diagnostic, a product on GDP per capita growth resilience was prepared. "The GDP per capita growth resilience dataset for countries along the Belt and Road is an important reference for analysing and comparing the current GDP per capita growth resilience of each country.
XU Xinliang
Macroeconomics refers to the entire national economy or the national economy as a whole, as well as its economic activities and operational status. "The data set of macroeconomic development resilience of countries along the Belt and Road reflects the level of macroeconomic development resilience of the countries along the Belt and Road, and the higher the data value, the stronger the macroeconomic development resilience of the countries along the Belt and Road. The macroeconomic development resilience dataset is prepared with reference to the World Bank's statistical database, using year-on-year changes in four indicators: GDP per capita, gross fixed capital formation as a percentage of GDP, inflation as measured by the GDP deflator, and total savings as a percentage of GDP for countries along the "Belt and Road" from 2000 to 2019. The macroeconomic development resilience product was prepared through a comprehensive diagnosis based on sensitivity and adaptability analysis, taking into account the year-on-year changes of each indicator. "The resilience dataset of macroeconomic development of countries along the Belt and Road is an important reference for analysing and comparing the resilience of macroeconomic development of various countries.
XU Xinliang
"The resilience of the domestic economic systems of the countries along the Belt and Road reflects the level of resilience of the domestic economic systems of each country, and the higher the value of the data, the stronger the resilience of the domestic economic systems of the countries along the Belt and Road. The resilience of domestic economic systems includes macroeconomic development resilience, industrial and service sector development resilience, and the data products are prepared with reference to the World Bank statistical database, using GDP per capita, gross fixed capital formation as a percentage of GDP, inflation as measured by GDP deflator, and gross savings as measured by GDP deflator for countries along the Belt and Road from 2000 to 2019. The resilience products of the domestic economic system are prepared through a comprehensive diagnosis based on sensitivity and adaptability analysis, taking into account the year-on-year changes of each indicator, using year-on-year data of six indicators: GDP per capita, gross fixed capital formation as a percentage of GDP, gross savings as a percentage of GDP, industrial value added as a percentage of GDP, and service value added as a percentage of GDP. "The resilience dataset of the domestic economic systems of the countries along the Belt and Road is an important reference for analysing and comparing the resilience of the domestic economic systems of various countries.
XU Xinliang
"The resilience dataset reflects the level of resilience of industrial and service development in the countries along the Belt and Road, and the higher the value, the stronger the resilience of industrial and service development in the countries along the Belt and Road. The resilience of industrial and service sector development data products are prepared with reference to the World Bank's statistical database, using the year-on-year changes of two indicators, namely the value added of industry as a percentage of GDP and the value added of service sector as a percentage of GDP, for countries along the Belt and Road from 2000 to 2019, and on the basis of considering the year-on-year changes of each indicator. Based on the sensitivity and adaptability analysis, a comprehensive diagnostic was prepared to generate products on the resilience of industrial and service sector development. "The resilience dataset of industrial and service sector development in countries along the Belt and Road is an important reference for analysing and comparing the current resilience of industrial and service sector development in each country.
XU Xinliang
"The Belt and Road countries' external trade system resilience dataset comprehensively reflects the level of resilience of each country's external trade system, and the higher the value of the data, the stronger the resilience of the external trade system of the countries along the Belt and Road. The World Bank's statistical database was used for the preparation of the external trade system resilience data, and the annual data of three indicators, namely the ratio of trade volume to gross national product (GDP), the annual growth rate of exports of goods and services, and the annual growth rate of imports of goods and services of countries along the Belt and Road, were used from 2000 to 2019. On the basis of the year-on-year changes in each indicator, a comprehensive diagnosis based on sensitivity and adaptability analysis was carried out to generate a resilience product for the foreign trade system. Please refer to the documentation for the methodology of preparing the data set. "The resilience dataset of the foreign trade system of countries along the Belt and Road is an important reference for analysing and comparing the current resilience of the foreign trade system of each country.
XU Xinliang
The data set is based on the NPP simulated by 16 dynamic global vegetation models (TRENDY v8) under S2 Scenario (CO2+Climate) and represents the net primary productivity of the ecosystem. Data was derived from Le Quéré et al. (2019). The range of source data is global, and the Qinghai Tibet plateau region is selected in this data set. Original data is interpolated into 0.5*0.5 degree by the nearest neighbor method in space, and the original monthly scale is maintained in time. The data set is the standard model output data, which is often used to evaluate the temporal and spatial patterns of gross primary productivity, and compared with other remote sensing observations, flux observations and other data.
STEPHEN Sitch
This data set records the statistical data of per capita GDP and growth rate and ranking (2010-2018) of all regions in China, and the data are divided by year. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains eight data tables, each of which has the same structure. For example, the data table of 2017-2018 has four fields: Field 1: Region Field 2: quantity Field 3: Rank Field 4: growth rate
Qinghai Provincial Bureau of Statistics
Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
NIU Ben, ZHANG Xianzhou
Data content: annual GDP statistics (1990-2019), quarterly cumulative GDP statistics (1990-2019) and GDP (2010-2019) Data sources and processing methods: the original macroeconomic data of China (including the third pole) from the official website of the world bank and sina.com from 1990 to 2019 are obtained through data sorting, screening and cleaning. The data are stored in Microsoft Excel (xlsx) format.
FU Wenxue
Data content: Central Bank gold and foreign exchange reserves (2000-2020) and money supply (2000-2017) Data sources and processing methods: the original data of banks and currencies in China (including the third pole) in 2015-2019 are obtained from the official website of the world bank and sina.com, and the bank and currency data sets of China (including the third pole) from 2000 to 2020 are obtained through data sorting, screening and cleaning. The data start time is from 2000 to 2020 in Microsoft Excel (xlsx) format.
FU Wenxue
Data content: Foreign Economic and trade_ Total import and export of goods (1952-2019) and foreign economic and trade_ Total import and export by trade (1981-2019) Data sources and processing methods: the original data of China's foreign trade and investment from 2015 to 2019 (including the third pole) were obtained from the official website of the world bank and sina.com, and the foreign trade and investment data set of China (including the third pole) from 1952 to 2019 was obtained through data sorting, screening and cleaning. The data start time is from 1952 to 2019 in Microsoft Excel (xlsx) format.
FU Wenxue
Data content: national economy_ Industrial value added (monthly) (2010-2019) Data source and processing method: the original industrial economic data of China (including the third pole) from the official website of the world bank and sina.com from 2010 to 2019 are obtained through data sorting, screening and cleaning. The data start time is from 2010 to 2019 in Microsoft Excel (xlsx) format.
FU Wenxue
Data content: price index_ Consumer price index (CPI) (2010-2019) Data source and processing method: obtain the economic original data of the third pole (China region) price index from the official website of the world bank and sina.com from 2015 to 2019, and obtain the economic data set of the third pole (China region) price index from 2010 to 2019 through data sorting, screening and cleaning. The data start time is from 2010 to 2019 in Microsoft Excel (xlsx) format.
FU Wenxue
It is summarized that the agricultural and socio-economic status of the five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan) in 2016. This data comes from the statistical yearbook of five Central Asian countries, including six elements: total population, cultivated land area, grain production area, GDP, proportion of agricultural GDP to total GDP, proportion of industrial GDP to total GDP, and forest area. Detailed statistics of the six socio-economic elements of the five Central Asian countries. It can be seen from the statistics that there are different emphases among the six elements of the five Central Asian countries. This data provides basic data for the project, facilitates the subsequent analysis of the ecological and social situation in Central Asia, and provides data support for the project data analysis.
LIU Tie
The data set is the global vegetation productivity data, including Gross Primary Productivity(GPP) and Net Primary Productivity (NPP). It was obtained by the CNRM-CM6-1 mode simulation of CMIP6 under the Historical scenario. The time range of the data covers from 1850 to 2014, the time resolution is a month, and the spatial resolution is about 1.406°×1.389°. For the simulated data details, please go to the following link: http://www.umr-cnrm.fr/cmip6/spip.php?article11.
Program for Climate Model Diagnosis and Intercomparison (PCMDI)
The data set includes: population and GDP data of the arctic (1990-2015) and county-level population and GDP data of the third pole region (gansu, qinghai and Tibet) (1970-2016). Socio-economic statistical attributes include: population (ten thousand), GDP (ten thousand yuan), total industrial and agricultural output (ten thousand yuan), total agricultural output (ten thousand yuan), and total industrial output (ten thousand yuan). The arctic population data are mainly derived from the world populationProspects: 2017 revision by the Department of economic and social affairs, which divides the total population by region and country. The data of the third pole mainly refer to the statistical yearbook of gansu province, qinghai province and Tibet autonomous region.County records of gansu, qinghai and Tibet autonomous regions.
Department of Economic and Social Affairs, National Bureau of Statistics, Qinghai Provincial Bureau of Statistics
The dataset is a 30-minute eddy covariance flux observation data from nine flux stations in the Three Poles, including the data of ecosystem Net Carbon Exchange (NEE), Gross Primary Productivity(GPP), and Ecosystem Respiration (ER) . The time coverage of the data is from 2000 to 2016. The main steps of data pre-processing include outlier removal (±3σ), coordinate axis rotation(three-dimensional wind rotation), Webb-Pearman-Leuning correction, outlier elimination, carbon flux interpolation and decomposition. And missing data is interpolated by the nonlinear empirical formula between CO2 flux value(Fc) and environmental factors.
ZHANG Yangjian, NIU Ben
This data contains part of the economic indicators of Qinghai province and Tibet Autonomous Region. The data statistics based on provinces can be used to construct the evaluation index system for the coupling coordination relationship between urbanization and eco-environment on the Tibetan Plateau. The data of the Tibet Autonomous Region contains seven indicators, including the gross domestic product (GDP), the primary, secondary and tertiary industries, industry, construction industry, and the per capita GDP, the time span is 1951-2016. The time span of the data set of Qinghai province is from 1952 to 2015, besides the above seven indicators, there is one more indicator of Qinghai province called agriculture forwdtry animal husbandry and fishery. All data are derived from the statistical yearbook, which is calculated at current prices. The gross domestic product (GDP) for 2005-2008 has been revised based on data from the second economic census.
DU Yunyan
This data set contains information on natural disasters in Qinghai over nearly 50 years, including the times, places and the consequences of natural disasters such as droughts, floods, hail, continuous rain, snow disasters, cold waves and strong temperature drops, low temperature freezing injuries, gales and sandstorms, pest plagues, rats, and geological disasters. Qinghai Province is located in the northeastern part of the Tibetan Plateau and has a total area of 720,000 square kilometers. Numerous rivers, glaciers and lakes lie in the province. Because two mother rivers of the Chinese nation, the Yangtze River and the Yellow River, and the famous international river—the Lancang River—originated here, it is known as the "Chinese Water Tower"; there are 335,000 square meters of available grasslands in the province, and the natural pasture area ranks fourth in the country after those of Inner Mongolia, Tibet and Xinjiang. There are various types of grasslands, abundant grassland resources, and 113 families, 564 genera and 2100 species of vascular plants, which grow and develop under the unique climatic condition of the Tibetan Plateau and strongly represent the characteristics of the plateau ecological environment. As the main part of the Tibetan Plateau, Qinghai Province is one of the centers of the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the study of climate and ecological environment in the international field of sciences and technology. The terrain and land-forms in Qinghai are complex, with interlaced mountains, valleys and basins, widely distributed snow and glaciers, the Gobi and other deserts and grassland. Complex terrain conditions, high altitudes and harsh climatic conditions make Qinghai a province with frequent meteorological disasters. The main meteorological disasters include droughts, floods, hail, continuous rain, snow disasters, cold waves and strong temperature drops, low temperature freezing injuries, gales and sandstorms. The data are extracted from the Qinghai Volume of Chinese Meteorological Disaster Dictionary, with manual entry, summarizing and proofreading.
Qinghai Provincial Bureau of Statistics
This data set contains statistical tables on the community situation of each county in Three-River-Source National Park. The specific contents include: Table 1 includes: number of administrative villages, number of natural villages, number of households, population, number of rural labor force, total value of primary and secondary industries, net income per capita, and number of livestock. Table 2 includes: the ethnic composition of the population (population of each ethnic group), education-related statistics (number of primary and secondary schools and number of students), health-related statistics (number of hospitals, health rooms and medical personnel), and statistics on the education level of the population (number of people with different education levels); Table 3 includes: the grassland (total grassland area, usable grassland area, moderately degraded area and grassland vegetation coverage), woodland (total area, arbor forest area, shrub forest area and sparse forest area), water area (total area, river area, lake area, glacier area, snowy mountain area and wetland area). A total of four counties were designed: Maduo, Qumalai, Zaduo and Zhiduo. This data comes from statistics of government departments.
National Bureau of Statistics
The distribution data of Central Asia desert oil and gas fields are in the form of vector data in ". SHP". Including the distribution of oil and gas fields and major urban settlements in the five Central Asian countries. The data is extracted and cut from modis-mcd12q product. The spatial resolution of the product is 500 m, and the time resolution is 1 year. IGBP global vegetation classification scheme is adopted as the classification standard. The scheme is divided into 17 land cover types, among which the urban data uses the construction and urban land in the scheme. The data can provide data support for the assessment and prevention of sandstorm disasters in Central Asia desert oil and gas fields and green town.
GAO Xin
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were forecast. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering of the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
This data set contains the results of the calculation of Net Primary Productivity (NPP) on the Tibetan Plateau based on ecological models and remote sensing data from 1982 to 2006. Ecosystem NPP of the Tibetan Plateau was generated based on the remote sensing Advanced Very High Resolution Radiometer (AVHRR) data and the Carnegie-Ames-Stanford Approach (CASA) model(1982-2006), the soil carbon content was generated based on the second soil census data, and the biomass carbon data were generated based on the High Resolution Biosphere Model (HRBM) model. Forest ecosystem NPP of the Tibetan Plateau (1982-2006): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 Grassland ecosystem NPP of the Tibetan Plateau(1982-2006): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00,npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00. Biomass carbon and soil carbon of the Tibetan Plateau: Biomass.e00,Socd.e00. The soil carbon content data (Socd) are generated based on data of the second soil census of China and Soil Map of China (1:1,000,000) by soil subclass interpolation. The NPP data are generated from the CASA model and AVHRR data simulation: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. The biomass carbon data are generated via HRBM model simulation: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. The raw data are mainly remote sensing data and field observation data with high accuracy; the verification and adjustment of the measured data in the field during the production were undertaken to maintain the error of the simulation results and the field measured data within the acceptable range as much as possible; the verification results of the NPP data and the field measured data show that the error remains within 15%. The spatial resolution is 0.05°×0.05° (longitude×latitude).
ZHOU Caiping
This data set contains sequence data of the number variation of livestock in the major cities and counties of the Tibetan Plateau from 1970 to 2006. It is used to study the social and economic changes of the Tibetan Plateau. The table has ten fields. Field 1: Year Interpretation: Year of the data Field 2: Province Interpretation: The province from which the data were obtained Field 3: City/Prefecture Interpretation: The city or prefecture from which the data were obtained Field 4: County Interpretation: The name of the county Field 5: Large livestock (10,000) Interpretation: The number of large livestock such as cattle, horses, mules, donkeys, and camels. Field 6: Cattle herd (10,000) Interpretation: Number of cattle Field 7: Equine animals(10,000) Interpretation: The number of equine animals such as horses, mules and donkeys. Field 8: Horses (10,000) Interpretation: The number of horses Field 9: Sheep (10,000) Interpretation: The number of sheep Field 10: Data Sources Interpretation: Source of Data The data come from the statistical yearbook and county annals. Some are listed as follows. [1] Gansu Yearbook Editorial Committee. Gansu Yearbook [J]. Beijing: China Statistics Press, 1984, 1988-2009 [2] Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook [J]. Beijing: China Statistics Press, 1988-2009 [3] Statistical Bureau of Sichuan Province, Sichuan Survey Team. Sichuan Statistical Yearbook [J]. Beijing: China Statistics Press, 1987-1991, 1996-2009 [4] Statistical Bureau of Xinjiang Uighur Autonomous Region . Xinjiang Statistical Yearbook [J]. Beijing: China Statistics Press, 1989-1996, 1998-2009 [5] Statistical Bureau of Tibetan Autonomous Region. Tibet Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-2009 [6] Statistical Bureau of Qinghai Province. Qinghai Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-1994, 1996-2008. [7] County Annals Editorial Committee of Huzhu Tu Autonomous County. County Annals of Huzhu Tu Autonomous County [J]. Qinghai: Qinghai People's Publishing House, 1993 [8] Haiyan County Annals Editorial Committee. Haiyan County Annals[J]. Gansu: Gansu Cultural Publishing House, 1994 [9] Menyuan County Annals Editorial Committee. Menyuan County Annals[J]. Gansu: Gansu People's Publishing House, 1993 [10] Guinan County Annals Editorial Committee. Guinan County Annals [J]. Shanxi: Shanxi People's Publishing House, 1996 [11] Guide County Annals Editorial Committee. Guide County Annals[J]. Shanxi: Shanxi People's Publishing House, 1995 [12] Jianzha County Annals Editorial Committee. Jianzha County Annals [J]. Gansu: Gansu People's Publishing House, 2003 [13] Dari County Annals Editorial Committee. Dari County Annals [J]. Shanxi: Shanxi People's Publishing House, 1993 [14] Golmud City Annals Editorial Committee. Golmud City Annals [J]. Beijing: Fangzhi Publishing House, 2005 [15] Delingha City Annals Editorial Committee. Delingha City Annals [J]. Beijing: Fangzhi Publishing House, 2004 [16] Tianjun County Annals Editorial Committee. Tianjun County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [17] Naidong County Annals Editorial Committee. Naidong County Annals [J]. Beijing: China Tibetology Press, 2006 [18] Gulang County Annals Editorial Committee. Gulang County Annals [J]. Gansu: Gansu People's Publishing House, 1996 [19] County Annals Editorial Committee of Akesai Kazak Autonomous County. County Annals of Akesai Kazakh Autonomous County [J]. Gansu: Gansu People's Publishing House, 1993 [20] Minxian County Annals Editorial Committee. Minxian County Annals [J]. Gansu: Gansu People's Publishing House, 1995 [21] Dangchang County Annals Editorial Committee. Dangchang County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [22] Dangchang County Annals Editorial Committee. Dangchang County Annals(Sequel) (1985-2005) [J]. Gansu: Gansu Cultural Publishing House, 2006 [23] Wenxian County Annals Editorial Committee. Wenxian County Annals[J]. Gansu: Gansu Cultural Publishing House, 1997 [24] Kangle County Annals Editorial Committee. Kangle County Annals [J]. Shanghai: Sanlian Bookstore. 1995 [25] County Annals Editorial Committee of Jishishan (Baoan, Dongxiang, Sala) Autonomous County. County Annals of Jishishan (Baoan, Dongxiang, Sala) Autonomous County[J], Gansu: Gansu Cultural Publishing House, 1998 [26] Luqu County Annals Editorial Committee. Luqu County Annals [J]. Gansu: Gansu People's Publishing House, 2006 [27] Zhouqu County Annals Editorial Committee. Zhouqu County Annals [J]. Shanghai: Sanlian Bookstore. 1996 [28] Xiahe County Annals Editorial Committee. Xiahe County Annals [J]. Gansu: Gansu Cultural Publishing House, 1999 [29] Zhuoni County Annals Editorial Committee. Zhuoni County Annals [J]. Gansu: Gansu Nationality Publishing House, 1994 [30] Diebu County Annals Editorial Committee. Diebu County Annals [J]. Gansu: Lanzhou University Press, 1998 [31] Pengxian County Annals Editorial Committee. Pengxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1989 [32] Guanxian County Annals Editorial Committee. Guanxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1991 [33] Wenjiang County Annals Editorial Committee. Wenjiang County Annals [J]. Sichuan: Sichuan People's Publishing House, 1990 [34] Shifang County Annals Editorial Committee. Shifang County Annals [J]. Sichuan: Sichuan University Press, 1988 [35] Tianquan County Annals Editorial Committee. Tianquan County Annals [J]. Sichuan: Sichuan Science and Technology Press, 1997 [36] Shimian County Annals Editorial Committee. Shimian County Annals [J]. Sichuan: Sichuan Cishu Publishing House, 1999 [37] Lushan County Annals Editorial Committee. Lushan County Annals [J]. Sichuan: Fangzhi Publishing House, 2000 [38] Hongyuan County Annals Editorial Committee. Hongyuan County Annals [J]. Sichuan: Sichuan People's Publishing House, 1996 [39] Wenchuan County Annals Editorial Committee. Wenchuan County Annals [J]. Sichuan: Bayu Shushe, 2007 [40] Derong County Annals Editorial Committee. Derong County Annals [J]. Sichuan: Sichuan University, 2000 [41] Baiyu County Annals Editorial Committee. Baiyu County Annals [J]. Sichuan: Sichuan University Press, 1996 [42] Batang County Annals Editorial Committee. Batang County Annals [J]. Sichuan: Sichuan Nationality Publishing House, 1993 [43] Jiulong County Annals Editorial Committee. Jiulong County Annals(Sequel) (1986-2000) [J]. Sichuan: Sichuan Science and Technology Press, 2007 [44] County Annals Editorial Committee of Derung-Nu Autonomous County Gongshan. County Annals of Derung-Nu Autonomous County Gongshan [J]. Beijing: Nationality Publishing House, 2006 [45] Lushui County Annals Editorial Committee. Lushui County Annals [J]. Yunnan: Yunnan People's Publishing House, 1995 [46] Deqin County Annals Editorial Committee. Deqin County Annals [J]. Yunnan: Yunnan Nationality Publishing House, 1997 [47] Yutian County Annals Editorial Committee. Yutian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [48] Cele County Annals Editorial Committee. Cele County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2005 [49] Hetian County Annals Editorial Committee. Hetian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [50] Qiemo County Local Chronicles Editorial Committee. Qiemo County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [51] Shache County Annals Editorial Committee. Shache County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [52] Yecheng County Annals Editorial Committee. Yecheng County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1999 [53] Akto County Local Chronicles Editorial Committee. Akto County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [54] Wuqia County Local Chronicles Editorial Committee. Wuqia County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1995
National Bureau of Statics of China
The data set recorded the total investment in fixed assets in Qinghai from 1980 to 2016. The data were derived from the Qinghai Society and Economics Statistical Yearbook and the Qinghai Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. The table contains 11 fields. Field 1: Year Interpretation: Year of the data Field 2: Total Interpretation: Total investment in fixed assets Unit: 100,000,000 yuan Field 3: State-owned economy Interpretation: State-owned economic investment in fixed assets Unit: 100,000,000 yuan Field 4: Collective Economy Interpretation: Collective economic investment in fixed assets Unit: 100,000,000 yuan Field 5: Individual Economy Interpretation: Individual economic investment in fixed assets Unit: 100,000,000 yuan Field 6: Other types of economy Interpretation: Other economic investment in fixed assets Unit: 100,000,000 yuan Field 7: Total Growth Interpretation: Total growth of investment in fixed assets Unit: % Field 8: State-owned growth Interpretation: Growth of state-owned economic investment in fixed assets Unit: % Field 9: Collective growth Interpretation: Growth of collective economic investment in fixed assets Unit: % Field 10: Individual Growth Interpretation: Growth of individual economic investment in fixed assets Unit: % Field 11: Other growth Interpretation: Growth of other economic investment in fixed assets Unit: %
Qinghai Provincial Bureau of Statistics, Qinghai Provincial Bureau of Statistics
Taking 2005 as the base year, the future population scenario was predicted by adopting the Logistic model of population. It not only can better describe the change pattern of population and biomass but is also widely applied in the economic field. The urbanization rate was predicted by using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation by nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data adopted the non-agricultural population. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of GDP per capita),the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of changes in industrial structure in China and the research area lagged behind the growth of GDP and was therefore adjusted according to the need of the future industrial structure scenarios of the research area.
ZHONG Fanglei
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, on which basis the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations for the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
Taking 2000 as the base year, the future population scenario prediction adopted the Logistic model of population, and it not only can better describe the change pattern of population and biomass but also is widely applied in the economic field. The urbanization rate was predicted using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of real GDP per capita), the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changing in China and the research area lagged behind the growth of GDP, so it was adjusted according to the need of the future industrial structure scenarios of the research area.
ZHONG Fanglei
By applying supply-demand balance analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, and the results were used to assess the vulnerability of the water resources system in the basin. The IPAT equation was used to establish a future water resource demand scenario, which involved setting various variables, such as the future population growth rate, economic growth rate, and water consumption per unit GDP. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydro-meteorological Institute, a model of the variation trends of the basin under a changing climate was designed. The glacial melting scenario was used as the model input to construct the runoff scenario in response to climate change. According to the national regulations of the water resource allocation in the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the grain production-related land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources in scenarios of climate change, glacial melting and population growth was analysed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities in the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
Taking 2005 as the base year, the future population scenario was predicted by adopting the logistic model of population. This model not only effectively describes the pattern of changes in population and biomass but is also widely applied in the field of economics. The urbanization rate was predicted using the urbanization logistic model. Based on the observed horizontal pattern of urbanization, a predictive model was established by determining the parameters in the parametric equation by applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data represent the non-agricultural population. The logistic model was used to predict the future gross domestic product of each county (or city), and then the economic development level of each county (or city) in each period (in terms of GDP per capita). The corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changes in China and the research area lagged behind the growth in GDP, so the changes were adjusted according to the need for future industrial structure scenarios in the research area.
YANG Linsheng, ZHONG Fanglei
The main body of the Tibetan Plateau is Qinghai Province and the Tibetan Autonomous Region. The economic and social data of Qinghai Province and the Tibetan Autonomous Region are the basis for the analysis and assessment of the basic data of sustainable development of populations, resources, environment and economic society on the Tibetan Plateau by integrating the basic data of natural sciences. Under normal circumstances, the statistical yearbooks of all provinces and regions are all in paper and CD-ROM versions, and users need to perform secondary editing before they can use them. This data set mainly relies on the raw data of the Statistical Yearbook of Qinghai Province and the Tibetan Autonomous Region to carry out data conversion and integrate the current economic and social data sets. The temporal coverage of the data is from 2007 to 2016, and the temporal resolution is one year. The spatial coverage is Qinghai Province and the Tibetan Autonomous Region of the Tibetan Plateau. The spatial resolution is the administrative unit of the prefecture or city. The data include information on population, economy, finance, agriculture, forestry, animal husbandry and fishery, investment in fixed assets, education and health.
WANG Shijin
Taking 2005 as the base year, the future population scenario prediction adopted the Logistic model of population, and it not only can better describe the change pattern of population and biomass but is also widely applied in the economic field. The urbanization rate was predicted using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of real GDP per capita),the corresponding industrial structure scenarios in each period were set, and each industry’s output value was predicted. The trend of changes in industrial structure in China and the research area lagged behind the growth of GDP, and, therefore, it was adjusted according to the need of the future industrial structure scenarios of the research area.
ZHONG Fanglei, YANG Linsheng
The dataset includes two parts that are: 1) channel flow, crop pattern, field management, and socio-economy data measured at super-station in 2008, 2010, 2011, 2012 (UTC+8), respectively. 2) irrigation data, crop pattern, and socio-economy data investigated at Daman irrigation district and Yingke irrigation district, respectively. 1.1 Objective of investigation Objectives of investigation for two parts data are to obtain crop pattern and irrigation water volume change with time, and to supply parameter for irrigation water optimal allocation model. 1.2 Investigation spots and items Investigation spots include six water management stations that are Dangzhai, Hua’er, Daman, Xiaoman, Jiantan, and Ershilidun, respectively, at Daman irrigation district. Investigation items comprise water allocation time, branch channel inflow, Dou channel inflow, irrigation area, channel water use efficiency, water price, and water fee. Investigation time is described as followed: 2012.03.16 to 2012.04.04, Spring irrigation; 2012.04.04 to 2012.05.14, Summer irrigation; 2012.05.20 to 2012.06.24, Summer irrigation; 2012.05.16 to 2012.07.06, Summer irrigation; 2012.07.15 to 2012.08.02, Autumn irrigation; 2012.08.10 to 2012.08.26, Autumn irrigation. Investigation spots include eight water management station that are Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, and Yangou, respectively, at Yingke irrigation district. Investigation time and items is described as followed: Year Data items Spots 2008, 2010, 2011 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Xiaoman county, Shangtouzha village 2012 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, Yangou 2012 Well data: Well deep, groundwater abstraction, irrigation area Chang’an, Liangjiadun, Shangqin 2012 Socio-economy data: population, agricultural income, un-agricultural income, water use for living, average residential area, education Chang’an, Xiaoman, Liangjiadun, Shangqin 2012 Field management: fertilizer name, fertilization time, fertilization rate, pesticide name, pesticide rate, time Chang’an, Xiaoman, Liangjiadun, Shangqin 2008, 2010, 2011, 2012 Crop pattern: crop name, seed time, harvest time, crop area, irrigation quota, field water use efficiency, crop yield, crop production value Xiaoman, Chang’an, Liangjiadun, Shangqin 1.3 Data collection Data was collected by cooperating with water management department of Yingke and Daman.
GE Yingchun, Xu Fengying, LI Xin
Data analysis method: macroeconomic development forecast Space scope: Sunan County, Ganzhou District, Minle County, Linze County, Gaotai County, Shandan County, Jinta County, Ejina, Suzhou District, Jiayuguan Time frame: 2020, 2030 Data: GDP (1 million yuan), GDP growth rate, primary production (1 million yuan), primary production growth rate, secondary production (million yuan), secondary production growth rate, tertiary production (million yuan), tertiary production growth rate, primary production rate Second rate, third rate
WANG Zhongjing
Input output table of 11 districts and counties in Heihe River Basin in 2012
DENG XiangZheng
1. Data overview Take Ganzhou District, Linze County and Gaotai County of Zhangye City in the middle reaches of Heihe River Basin as the research area, and carry out input-output survey on agricultural, industrial and service enterprises and individuals in the research area from May to November 2013. According to the survey data, use the survey method to compile the input-output table of 42 departments in 2012 in this area. 2. The data content Data mainly reflects the input-output of various national economic industries in the process of production, circulation and consumption in ganlingao region in 2012.
XU Zhongmin, SONG Xiaoyu
1. Data overview Based on the collected statistical yearbooks and survey data of counties and districts in Zhangye City in the middle reaches of Heihe River, the social and economic database in the middle reaches is constructed to reflect the basic situation of regional social economy. 2. Data content The database includes two data sets: (1) statistical yearbook data; (2) survey data of human factors in river basin. The statistical yearbook data mainly includes a number of relevant statistical data such as the gross product, financial revenue, construction of villages and towns, industrial output value, grain output, etc. of Zhangye City and its towns. The survey data of human factors in Heihe River Basin mainly include the survey data of social capital, cultural theory, happiness index and sustainable consumption in Heihe River Basin. 3. Time and space The statistical yearbook data is the statistical data of Ganzhou District, Linze County, Gaotai County, Sunan County, Shandan County, Minle county and towns under the jurisdiction of each county from 1990 to 2010. The survey data of human factors in the basin is the corresponding survey data of counties in the upper, middle and lower reaches in 2005.
XU Zhongmin
It includes the social and economic data of Gansu, Qinghai and Inner Mongolia from 2000 to 2012. The specific indicators include GDP, income, population, employment, medical care, education, land area, finance and a series of social and economic indicators;
DENG XiangZheng
"Hydrological ecological economic process coupling and evolution of Heihe River basin governance under the framework of water rights" (91125018) project data collection - economic and social data of Heihe River 2010 . 1. Data overview: Economic and social data of Heihe River 2010. 2. Data content: Economic and social data of Ganzhou District, Linze County and Gaotai County of Heihe River Basin 2010.
WANG Zhongjing
The social accounting matrix, also known as the national economy comprehensive matrix or the national economy circulation matrix, uses the matrix method to connect the various accounts of the national economy systematically, represents the statistical index system of the national economy accounting system, and reflects the circulation process of the national economy operation. It uses the matrix form to arrange the national accounts orderly according to the flow and stock, domestic and foreign. The data reflects the balanced value of social accounting matrix in Gaotai County.
DENG XiangZheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn