Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.
HE Bian
The extraction of glacier surface movement is of great significance in the study of glacier dynamics and material balance changes. In view of the shortcomings of the current application of autonomous remote sensing satellite data in glacier movement monitoring in China, the SAR data covering typical glaciers in alpine areas of the Qinghai Tibet Plateau from 2019 to 2020 obtained under the GF-3 satellite FSI mode was used to obtain the glacier surface velocity distribution in the study area with the help of a parallel offset tracking algorithm. With its good spatial resolution, GF-3 image has significant advantages in extracting glacier movement with small scale and slow movement, and can better reflect the details and differences of glacier movement. This study is helpful to analyze the movement law and spatio-temporal evolution characteristics of glaciers in the Qinghai Tibet Plateau under the background of climate change.
YAN Shiyong
The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
JIANG Liming JIANG Liming JIANG Liming
This data is the simulation of Antarctic sea ice density data from 2020 to 2100 under the medium emission scenario (ssp245) of the 6th International Coupled Model Comparison Program (CMIP6). The 25 mode data of CMIP6 were uniformly interpolated and then aggregated averaged. The size of sea ice density data is 0-1, the data time range is from January 2020 to December 2100, the time resolution is month, the spatial range is south of 45 ° S, and the spatial resolution is 1 ° × 1°。 This data provides the status and evolution of Antarctic sea ice under the medium emission scenario, and can provide reference for future changes in Antarctica.
LI Shuanglin, WANG Hui
Based on the CMIP6 model data (see Table 1 for the model list), the distribution and thickness of frozen soil in the Qinghai Tibet Plateau and the circum Arctic region, as well as the terrestrial ecosystem carbon flux (total primary productivity GPP and ecosystem carbon source sink NEP) data in the frozen soil area under different climate change scenarios (including SSP126, SSP245 and SSP585) in the historical period (1990-2014) and the future (2046-2065) are estimated, with a spatial resolution of 1 ° × 1°。 Among them, the distribution of frozen soil is estimated under the future climate warming scenario by using the spatial constraint method (Chadburn et al., 2017), based on the probability of frozen soil occurrence under different temperature gradients at the current stage, and combined with the future temperature change simulated by the Earth system model. For the change of active layer thickness, the sensitivity of active layer thickness to temperature change estimated by remote sensing at this stage is used to constrain the change of active layer thickness simulated by the Earth System Model, so as to correct the error of the model in simulating the thickness of frozen soil active layer. The future permafrost carbon flux is the multi model ensemble average of the Earth system model simulation results. The simulation results show that the permafrost in the Qinghai Tibet Plateau will be significantly degraded under the future climate change scenario. With the future temperature rise, the continuous permafrost regions will be shown as carbon sources, but the temperature rise will promote the growth of vegetation, and the carbon sink capacity in the discontinuous permafrost regions will be enhanced. Similar to the Qinghai Tibet Plateau, the permafrost around the Arctic will also be generally degraded in the future, and the future climate warming will promote the growth of vegetation in the Arctic, thus enhancing regional carbon sinks.
WANG Tao, LIU Dan , WEI Jianjun
Based on the 33rd Antarctic Scientific Expedition in China, the data set of temporal and spatial distribution of metal element concentrations in snow and ice obtained on the section from Zhongshan Station to Dome A in East Antarctica mainly includes: 1. A shallow ice core obtained 202 km away from Zhongshan Station. The ice core covers the period from 1990 to 2017 with a resolution of years, including metal element iron, hydrogen and oxygen isotopes and other data. 2. Collect a sample every 10km along the Zhongshan Station Dome A section in East Antarctica. The metal elements include rare earth elements, barium and other elements. The data can be used to study the pollution and contribution of natural sources and human activities to Antarctic snow and ice.
Du Zhiheng
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
The ground-based observation dataset of aerosol optical properties over the Tibetan Plateau was obtained by continuous observation with a Cimel 318 sunphotometer, involving two stations: Qomolangma Station and Nam Co Station. These products have taken the process of cloud detection. The data cover the period from January 1, 2021 to December 31, 2021, and the time resolution is daily. The sunphotometer has eight observation channels from visible light to near infrared, and the central wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm, respectively. The field of view angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. Six bands of aerosol optical thickness can be obtained from direct solar radiation, and the accuracy is estimated to be 0.01-0.02. Finally, AERONET unified inversion algorithm was used to obtain the aerosol optical thickness, Ångström index, aerosol particle size distribution, single scattering albedo, phase function, complex refraction index and asymmetry factor.
CONG Zhiyuan
Both a decrease of sea ice and an increase of surface meltwater, which may induce ice-flow speedup and frontal collapse, have a significant impact on the stability of the floating ice shelf in Greenland. However, detailed dynamic precursors and drivers prior to a fast-calving process remain unclear due to sparse remote sensing observations. Here, we present a comprehensive investigation on hydrological and kinematic precursors before the calving event on 26 July 2017 of Petermann Glacier in northern Greenland, by jointly using remote sensing observations at high-temporal resolution and an ice-flow model. Time series of ice-flow velocity fields during July 2017 were retrieved with Sentinel-2 observations with a sub-weekly sampling interval. The ice-flow speed quickly reached 30 m/d on 26 July (the day before the calving), which is roughly 10 times quicker than the mean glacier velocity.
JIANG Liming
Glaciers are sensitive to climate change. With global warming, the melting of glaciers continues to accelerate all over the world. Surging glaciers are glaciers with intermittent and periodic acceleration, which is a sensitive indicator of climate change. Based on Landsat and Sentinel satellite images from 1980s to 2020, the study area images were obtained by filtering, stitching, and cropping. Among them, the L1GS level images collected by Landsat TM sensor were geo-registered using a second-order polynomial, and the error of the geo- registered images was less than one pixel. After image template matching with an orientation correlation algorithm, this data set provides the surface ice flow velocity of a typical surging glacier in the Greenland ice sheet, Sortebræ Glacier in different period from 1980s to 2020. It is expected to contribute to the research on the surging process of Sortebræ Glacier and the discussion on the mechanism of glacier surging in the context of global warming.
QIAO Gang , SUN Zixiang , YUAN Xiaohan
The data set of ecological adjustment value of Arctic permafrost change from 1982 to 2015, with the time resolution of 1982, 2015 and the change rate of two phases, covers the entire Arctic tundra area, with the spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, and combined with GIS and ecological methods, it quantifies the adjustment service value of Arctic permafrost to the ecosystem, The unit price refers to the correlation (0.35) between the active layer thickness and NDVI changes after excluding precipitation and snow water equivalent, and the grassland ecosystem service value (the unit price of tundra ecosystem service is based on 1/3 of the grassland ecosystem service value).
WANG Shijin
The active layer thickness in the Wudaoliang permafrost region of the Qinghai Tibet Plateau is retrieved based on the seasonal deformation obtained by SBAS-InSAR technology and ERA5-Land spatio-temporal multi-layer soil moisture data corrected by variational mode decomposition method. The time range of the is 2017-2020, and the spatial resolution is 1km. This data can be used to study the change of the active layer thickness in the permafrost region of the Qinghai Tibet Plateau and analyze its interaction with climate change, water cycle and energy cycle. It is significance to understand the permafrost degradation, environment evolution and the impact of permafrost degradation on ecology and climate.
LU Ping , HAO Tong , LI Rongxing
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
YANG Bojin , HUANG Huabing , LIANG Shuang , LI Xinwu
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. The active layer thickness (ALT) is not only an important index to study the thermal state of ground in permafrost region, but also a key factor to be considered in the construction of permafrost engineering. The core of GIPL1.0 is kudryavtesv method, which takes into account the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin Guoan et al. found that compared with kudryavtesv method, the accuracy of TTOP model is higher, so they improved the model in combination with freezing / thawing index. Through verification of field monitoring data, it was found that the simulation error of ALT is less than 50cm. Therefore, the ALT in the Qinghai Tibet project corridor is simulated by using the improved GIPL1.0 model, and the future ALT under the ssp2-4.5 climate change scenario is predicted.
NIU Fujun
(1) Data content: data set of Antarctic sea ice extent (Northernmost Latitude of Sea Ice Edge (NLSIE) [°N]) in the past 200 years; (2) Data source and processing method: the data is generated based on the statistical model using six annual resolution proxies (ice core MSA, accumulation rate, etc.); (3) Data quality description: annual resolution; Areas: Indian and western Pacific sector of the Southern Ocean (50 ° – 150 ° E, indwpac), Ross Sea (160 ° E – 140 ° W, RS), Amundsen Sea (90 ° – 140 ° W, as), Bellingshausen Sea (50 ° – 90 ° W, BS), Weddell Sea (50 ° W – 20 ° E, WS); (4) It can be used to study the interdecadal variability of Antarctic sea ice.
YANG Jiao
The data is an excel file, which includes four tables named as follows: Altay Snow DOC Time Series, Altay Snow Pit Data, Altay Snow MAC (absorption section) and Central Asia Mos Island Glacier BC, OC, DUST Data. Altay snow DOC table includes seven columns including sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 47 sample data. Altay snow pit table includes 8 columns including snow pit number, sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 238 sample data. Altay snow MAC table includes: sampling time, MAC and AAE, a total of three columns, and 46 sample data. The BC, OC and DUST data tables of glaciers in Central Asia's Muse Island include 8 columns: code no (sample number), Latitude (latitude), Longitude (longitude),/m a.s.l (altitude), snow type (snow type), BC, OC and DUST, which are analyzed by sampling time. There are 105 rows of data in total. Abbreviation explanation: DOC: Dissolved Organic Carbon MAC: mass absorption cross section BC: black carbon DUST: Dust OC: Organic carbon TN: Total Nitrogen PPM: ug g-1 (microgram per gram) PPb: ng g-1 (nanogram per gram)
ZHANG Yulan
The alpine region of Asia is the third pole in the world, and it is called the "Asian water tower". Affected by climate warming, glaciers continue to lose money, which has profoundly changed the supply-demand relationship of glacial water resources. In order to systematically understand the response of glaciers to climate change, the project reveals the relationship between the change of glacier material balance and climate factors through the sensitivity of glacier material balance. The data includes two maps: the sensitivity distribution map of material balance to temperature and precipitation and the climate sensitivity zoning. In the past 70 years, there have been significant differences in the evolution sequence of glacier material balance among mountain systems in the high mountain region of Asia. The glaciers in the Karakoram and West Kunlun regions have shown a stable state, and the material balance is a weak positive balance, while the Himalayas, Tianshan and Qilian Mountains have shown an accelerated trend after 1990. This is mainly due to the sensitivity of material balance to temperature and precipitation. The monthly scale material balance model is driven by 0.5 ° resolution era5 temperature and precipitation data, and the material balance calibration parameters of 43 monitored glaciers are 1 ° from 2000 to 2016 × The parameters are spatially constrained by the 1 ° aster material balance data, and the material balance sequences of 95085 glaciers in the high mountain region of Asia from 1951 to 2020 are reconstructed by using the method of extrapolation of spatial parameters. The sensitivity of glacier material balance to temperature (± 0.5K, ± 1K, ± 1.5k) and precipitation (± 10%, ± 20%, ± 30%) is analyzed, In combination with the influencing factors of glacier material balance (distribution of summer temperature, ratio of summer precipitation, distribution of glacier types, distribution of clear sky solar radiation in summer, etc.), the glacial climate sensitivity in the high mountain region of Asia is classified and divided into four categories, as shown in Fig. 4: the main control area of air temperature: the temperature is the main control factor of glacier material balance change, and precipitation occupies a secondary position; Precipitation control area: the glacier is mainly controlled by precipitation, and the temperature in the glacier area is lower than 0 ° C throughout the year; Temperature and precipitation control area of accumulated glacier in winter: refers to that the glacier is mainly supplied by precipitation in winter, and the change of material balance of the glacier is the result of the joint action of temperature and precipitation; Summer cumulative glacier temperature and precipitation control area: refers to the supply mode of glacier is summer precipitation, and the material balance of glacier is the result of the joint action of temperature and precipitation.
SHANGGUAN Donghui
The Qinghai Tibet Engineering Corridor starts from Golmud in the north and ends at Lhasa in the south. It passes through the core area of the Qinghai Tibet Plateau and is an important channel connecting the mainland and Tibet. Permafrost temperature is not only an important index to study ground thermal state in permafrost regions, but also a key factor to be considered in permafrost engineering construction. The core of GIPL1.0 is the Kudryavtesv method, which considers the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin found that compared with the Kudryavtesv method, the accuracy of TTOP model was higher. Therefore, the model was improved in combination with the freezing/thawing index. Through the verification of field monitoring data, it was found that the simulation error of permafrost temperature was less than 1 ℃. Therefore, the improved GIPL1.0 model is used to simulate the permafrost temperature of the Qinghai Tibet project corridor, and predict the future permafrost temperature under the SSP2-4.5 climate change scenario.
NIU Fujun
The dataset is the remote sensing image data ofGF-1 satellite in the Qinghai-Tibet engineering corridor obtained by China High Resolution Earth Observation Center. After the fusion processing of multispectral and panchromatic bands, the image data with a spatial resolution of 2 m is obtained. In the process of obtaining ground vegetation information, the classification technology of combining object-oriented computer automatic interpretation and manual interpretation is adopted, The object-oriented classification technology is to collect adjacent pixels as objects to identify the spectral elements of interest, make full use of high-resolution panchromatic and multispectral data space, texture and spectral information to segment and classify, and output high-precision classification results or vectors. In actual operation, the image is automatically extracted by eCognition software. The main processes are image segmentation, information extraction and accuracy evaluation. After verification with the field survey, the overall extraction accuracy is more than 90%.
NIU Fujun
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
SONG Mirong
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
SONG Mirong
In recent years, with the acceleration of the melting of the Antarctic ice sheet, a large amount of ice melt has formed on the surface of the ice sheet from 2000 to 2019. It is of great significance to study the material balance of the Antarctic ice sheet to deeply understand the spatial-temporal distribution and dynamic changes of the melt water on the Antarctic ice sheet. This data set is based on Landsat7 and landsat8 images with 30 m spatial resolution from 2000 to 2019. By using normalized water body index, Gabor filtering and morphological path opening operations, the ice melt grid data set is generated, and the grid water body mask is converted into vector data in ArcGIS. This data set is based on the 250m ice surface melt water data set of the Antarctic ice sheet melting area (Alexander Island, Antarctic Peninsula) from 2000 to 2019 extracted from Landsat images. The time is concentrated from December to February (Southern Hemisphere summer)
YANG Kang
According to the inducing factors of potential thermal melting disasters (mainly thermal melting landslides) in the pan Arctic, including temperature (freezing and Thawing Environment), rainfall, snow cover, soil type, topography and landform, and underground ice content, based on the basic data provided by the big data resource database of the earth, machine learning methods (logic regression, random forest, artificial neural network, support vector machine, etc.) are adopted, and the currently interpreted thermal melting landslides in the northern hemisphere are taken as training samples, Finally, the zonation map of thermal melt disaster susceptibility (occurrence probability) in the pan Arctic was obtained. According to the sensitivity of driving factors, it is found that climate factors (temperature and rainfall) have the largest contribution to the occurrence and distribution of thermal melt disasters, followed by slope factors, and ice content and radiation also have a high contribution.
NIU Fujun
Firstly, the freeze thaw index is calculated by using the resampled crunep data, and then the permafrost area of circum-Arctic is predicted by the frozen number model after snow depth correction. The simulated pan Arctic permafrost area from 2000 to 2015 is 19.96 × 106 km2。 Places inconsistent with the distribution of Pan Arctic permafrost provided by the existing international snow and Ice Data Center are mainly located in island permafrost areas.
NIU Fujun
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
In order to better understand the mechanism of the interaction between the global climate and the Fimbu and Jelbart ice shelves, it is important to obtain the long-term ice velocity changes in this region. 1960-1980s Ice Flow Velocity Field Data Product Set of the Fimbul and Jelbart Ice Shelves, East Antarctica: Using the early Argon, Landsat MSS and TM satellite images, based on pre-processing the early remote sensing images to obtain the orthophoto images with precise geometric status, a layered matching method under the constraint strategy of artificial point feature point grid point was proposed, and the historical ice flow velocity field data product of the Fimbul Jelbart Ice Shelf, East Antarctica was extracted. This study is of great significance for studying the historical ice velocity of the Fimbul Jelbart Ice Shelf in East Antarctica from 1963 to 1987, and can provide basic data for studying the response of the ice sheet to global climate change.
LI Rongxing , FENG Tiantian , LI Yanjun , CHENG Yuan , QIAO Gang
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
The data product of ice flow velocity field of Rayner Glacier in East Antarctica in 1963 based on ARGON historical remote sensing images. Using two declassified satellite images taken in 1963 with an interval of two months, the early ice flow velocity field of the Reina Glacier in eastern Antarctica is estimated by hierarchical matching based on parallax decomposition. The accuracy of the estimated velocity map can reach 70 m/year. A method for estimating the surface velocity of cooperative glaciers based on the parallax decomposition of optical stereo images. First, the image to be matched generates the core image and the pyramid of the core image; Next, the ice flow area mask is used to divide the image into ice flow area and non ice flow area for matching respectively. In addition to the normal matching steps, the ice flow area also needs to perform parallax demarcation to distinguish the impact of ice flow movement on terrain parallax. Finally, through layer by layer matching, we can get the DTM and ice flow diagram of the object side at the bottom. This data is of great significance for reconstructing the early surface morphology and ice flow velocity of Rayner Glacier in East Antarctica.
LI Rongxing , QIAO Gang , YE Wenkai
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The microbial reprocessing products of polar ice and snow in typical years collected the analysis results of bacteria sampled from glaciers, Glacial Snow and ice in the polar regions and the Qinghai Tibet Plateau from 2010 to 2018. Through sorting, summarizing and summarizing, the post-processing data products of soil microorganisms in the three pole region are obtained, and the data format is excel, which is convenient for users to view. Among them, the prokaryotes of Glacial Snow and ice in the polar regions and Qinghai Tibet Plateau are the sequences of bacterial 16S ribosomal RNA gene collected by teacher Liu Yongqin's experimental group from NCBI database from 2010 to 2018. The collected sequences calculate the similarity between sequences by using dotour software. Sequences with a similarity of more than 97% are clustered into an OTU, and OTU representative sequences are defined. OTU representative sequences were compared with RDP database through "Classifier" software, and were identified to the first level when the reliability was greater than >80%; The glaciers on the Qinghai Tibet Plateau were collected from 2010 to 2018, including the bacterial 16S ribosomal RNA gene sequence of seven glaciers on the Qinghai Tibet Plateau (East Rongbu glacier on Mount Everest, Tianshan No. 1 glacier, Guliya glacier, Laohugou glacier, muzitang glacier, July 1st glacier and yuzhufeng glacier) isolated by teacher Liu Yongqin's experimental group, Malan glacier isolated by teacher Xiang Shurong and ruogangri glacier isolated by teacher Zhang Xinfang. Glacier samples were collected and brought back to the ecological Laboratory of the Institute of Qinghai Tibet Plateau Research in Beijing and the Lanzhou cryosphere National Laboratory. After coating the plate, it was cultured at different temperatures (4-25 ℃) for 20-90 days, and a single colony was picked for purification. The isolated bacteria extracted DNA, amplified 16S ribosomal RNA gene fragments with 27f/1492r primers, and sequenced with Sanger method. 16S ribosomal RNA gene sequence was compared with RDP database through "Classifier" software, and was identified to the first level when the reliability was greater than >80%.
YE Aizhong
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
MA Yuan
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
The thickness of the active layer of the three pole permafrost combines two sets of data products. The main reference data is the annual value of the active layer thickness from 1990 to 2015 generated by GCM model simulation. The data format of this data set is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. The reference correction data set is the average value of active layer thickness from 2000 to 2015 simulated by statistical and machine learning (ML) methods. The data format is GeoTIFF format, the spatial resolution is 0.1 °, and the data unit is m. Through post-processing operations such as data format conversion, spatial interpolation, data correction, etc., this research work generates the permafrost active layer thickness data in netcdf4 format, with a spatial resolution of 0.1 °, a temporal resolution of years, a time range of 1990-2015, and a data unit of CM.
YE Aizhong
The original data of carbon flux in the three pole permafrost region are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data include parameters representing carbon flux such as NPP and GPP in the permafrost region of the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the NPP and GPP data in permafrost region in netcdf4 format are generated. The spatial resolution is 0.1 °, the time resolution is years, the time range is 2046-2065, and the data unit is gc/m2yr.
YE Aizhong
The original thickness data of the active layer of the three pole permafrost are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The content of the original data is the thickness of the active layer in the permafrost area of the Qinghai Tibet Plateau. The data format is netcdf4, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the active layer thickness in permafrost area in netcdf4 format is generated, with a spatial resolution of 0.1 °, a time resolution of years, a time range of 2046-2065, and the unit is cm.
YE Aizhong
The original data of the three pole permafrost range are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data content is the spatial range of permafrost and seasonal frozen soil in the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, this research work generates the permafrost range data in netcdf4 format, with a spatial resolution of 0.1 °, a time resolution of years, and a time range of 2046-2065. Permafrost is represented by 1, and seasonal permafrost is represented by 0.
YE Aizhong
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.
WANG Shijin
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
WANG Shijin
This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.
TANG Yin , TANG Qiuhong , WANG Ninglian, WU Yuwei
Different forms of precipitation (snow, sleet, and rain) have divergent effects on the Earth’s surface water and energy fluxes. Therefore, discriminating between these forms is of significant importance, especially under a changing climate. We applied a state-of-the-art parameterization scheme with wet-bulb temperature, relative humidity, surface air pressure, and elevation as inputs, as well as observational gridded datasets with a maximum spatial resolution of 0.25◦, to generate a gridded dataset of different forms of daily precipitation (snow, sleet, and rain) and their temperature threshold across mainland China from 1961-2016. The annual snow, sleet, and rain amount were further calculated. The dataset may benefit various research communities, such as cryosphere science, hydrology, ecology, and climate change.
SU Bo , ZHAO Hongyu
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
SU Bo
Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.
PAN Xiaoduo, LI Hu
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn