The data set mainly includes typical rare earth deposits in China, such as Maoniuping and Lizhuang rare earth deposits in Mianning, Western Sichuan, and Gansha OBO rare earth deposits in Gansu Province. These rare earth deposits are genetically related to carbonate alkaline rock complex. In situ U-Pb dating, whole rock major and trace elements, Sr nd Pb radioisotopes, C-O-B-Ca stable isotopes and mineral in situ major and trace elements contents of rocks or ores in these complexes were analyzed. The major elements were measured by X-ray fluorescence spectrometer (XRF), the trace elements were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the isotopes were mainly measured by mc-icp-ms. The main conclusions are as follows: (1) it is revealed that the magma source area of alkaline carbonate type REE deposit experienced the addition of strong subduction material, and its formation depth may be deeper than previously thought(2) It is revealed that the aegirization may be related to carbonatite and alkaline magmatism, and there may be differences in the aegirization between the two types of magma(3) The later reformation of the rare earth deposits with younger age may be relatively weak, while the rare earth deposits with older age are easy to be influenced by the later geological process and difficult to distinguish.
WENG Qiang, LI Ningbo, LI Ao
The data content mainly includes the main and micro data of the whole rock of some magmatic rocks in the Hoh Xil Lhasa plate of the Qinghai Tibet Plateau. The samples were mainly distributed in Hoh Xil lake, South Qiangtang guoganjianian, Dugur, and Gangdise Nasongduo and Saga counties. There are more than 300 major and trace elements in the samples, including olivine leucite, quartz monzonite, diorite and granite, which are of great significance to the study of the lithospheric evolution of the Qinghai Tibet Plateau. Data mainly come from published articles or being accepted. XRF spectroscopy was used to determine the major elements and ICP-MS was used to determine the trace elements. The data quality is highly reliable, and the testing units include the State Key Laboratory of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, etc. The data are published in high-level journals, including geology, BSA bulletin and Journal of petroleum.
TANG Gongjian, WANG Jun, QI Yue, ZHOU Jinsheng, DAN Wei
The data set includes soil pH data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
The data set includes soil organic carbon concentrations data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.
ZHANG Ganlin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn