The temperature humidity index (THI) was proposed by J.E. Oliver in 1973. Its physical meaning is the temperature after humidity correction. It considers the comprehensive impact of temperature and relative humidity on human comfort. It is an important index to measure regional climate comfort. On the basis of referring to the existing classification standards of physiological and climatic evaluation indexes, combined with the natural and geographical characteristics of the Qinghai Tibet Plateau and facing the needs of human settlements suitability evaluation in the Qinghai Tibet Plateau, the temperature and humidity index and its suitability zoning results of the Qinghai Tibet Plateau (more than 3000 meters) are developed (including unsuitable, critical suitable, general suitable, relatively suitable and highly suitable).
LI Peng, LIN Yumei
The data include raw sequencing result of plant DNA in surface sediments of 33 lakes in the Qinghai-Tibetan Plateau and arid northwestern China. We used PowerMax Soil Kit of Qiagen company in Germany to extract DNA, then used universal plant primer g-h (Taberlet et et al., 2007) to amplify P6 loop of chloroplast trnL (UAA) intron in the sample. The PCR products were then sent to Fasteris company in Switzerland for the next-generation paired-end sequencing. The sequencing instrument is Illumina Nextseq 550. The data quality score (Q30) is 81.97.
LIU Xingqi, JIA Weihan
The data set records the operation of the pollution source monitoring center in Haixi Prefecture of Qinghai Province from July 2018 to September 2019. The data is collected from the Department of ecological environment of Haixi Prefecture. The data set contains 42 text files, recording the weekly report of Haixi pollution source monitoring center from July 2018 to September 2019, and each file records the content of the weekly report once. Including the video monitoring system operation, online monitoring system operation, new online monitoring system construction acceptance, online monitoring system construction acceptance, online monitoring data analysis and transmission efficiency. Data coverage time range: July 16, 2018 to September 1, 2019.
Ecological Environment Bureau of Haixi Prefecture Qinghai Province
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
This data contains part of the economic indicators of Qinghai province and Tibet Autonomous Region. The data statistics based on provinces can be used to construct the evaluation index system for the coupling coordination relationship between urbanization and eco-environment on the Tibetan Plateau. The data of the Tibet Autonomous Region contains seven indicators, including the gross domestic product (GDP), the primary, secondary and tertiary industries, industry, construction industry, and the per capita GDP, the time span is 1951-2016. The time span of the data set of Qinghai province is from 1952 to 2015, besides the above seven indicators, there is one more indicator of Qinghai province called agriculture forwdtry animal husbandry and fishery. All data are derived from the statistical yearbook, which is calculated at current prices. The gross domestic product (GDP) for 2005-2008 has been revised based on data from the second economic census.
DU Yunyan
Taking 2005 as the base year, the future population scenario was predicted by adopting the Logistic model of population. It not only can better describe the change pattern of population and biomass but is also widely applied in the economic field. The urbanization rate was predicted by using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation by nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data adopted the non-agricultural population. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of GDP per capita),the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of changes in industrial structure in China and the research area lagged behind the growth of GDP and was therefore adjusted according to the need of the future industrial structure scenarios of the research area.
ZHONG Fanglei
Taking 2000 as the base year, the future population scenario prediction adopted the Logistic model of population, and it not only can better describe the change pattern of population and biomass but also is widely applied in the economic field. The urbanization rate was predicted using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of real GDP per capita), the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changing in China and the research area lagged behind the growth of GDP, so it was adjusted according to the need of the future industrial structure scenarios of the research area.
ZHONG Fanglei
Taking 2005 as the base year, the future population scenario was predicted by adopting the logistic model of population. This model not only effectively describes the pattern of changes in population and biomass but is also widely applied in the field of economics. The urbanization rate was predicted using the urbanization logistic model. Based on the observed horizontal pattern of urbanization, a predictive model was established by determining the parameters in the parametric equation by applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data represent the non-agricultural population. The logistic model was used to predict the future gross domestic product of each county (or city), and then the economic development level of each county (or city) in each period (in terms of GDP per capita). The corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changes in China and the research area lagged behind the growth in GDP, so the changes were adjusted according to the need for future industrial structure scenarios in the research area.
YANG Linsheng, ZHONG Fanglei
Correlation data of vegetation functional traits with topographic factors and pastoral animal husbandry activity factors, including: 1) observation data of main functional traits of 2-3 kinds of grassland plants in elevation, slope and slope upward; 2) correlation analysis data of vegetation functional traits and topographic factors; 3) correlation analysis data between vegetation functional traits and livestock activity intensity factors.
ZHAO Chengzhang
The ecological data of Zhangye City from 2001 to 2012 include: the reuse rate of industrial water, the comprehensive utilization rate of industrial solid, the ratio of environmental protection investment to GDP, the per capita water consumption, the share of ecological water, the use intensity of chemical fertilizer, the use intensity of pesticide, the use intensity of agricultural plastic film, and the energy consumption per unit GDP
ZHANG Dawei
The project “The impact of the frozen soil environment on the construction of the Qinghai-Tibet Railway and the environmental effects of the construction” is part of the “Environmental and Ecological Science in West China” programme supported by the National Natural Science Foundation of China. The person in charge of the project is Wei Ma, a researcher at the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The project ran from January 2002 to December 2004. Data collected in this project included the following: Monitoring data of the active layer in the Beiluhe River Basin (1) Description of the active layer in the Beiluhe River Basin (2) Subsurface moisture data from the Beiluhe River Basin, 2002.9.28-2003.8.10 (Excel file) * Site 1 - Grassland moisture data * Site 2 – Removed turf moisture data * Site 3 - Natural turf moisture data * Site 4 - Gravel moisture data * Site 5 - Insulation moisture data (3) Subsurface temperature data from the Beiluhe River Basin, 0207-0408 Excel file * Temperature data for the ballast surface * Temperature data for insulation materials * Temperature data for a surface without vegetation * Temperature data for a grassland surface * Temperature data for a grit and pebble surface Data on the impact of construction on the ecological environment were obtained at Fenghuoshan, Tuotuohe, and Wudaoliang. Sample survey included plant type, abundance, community coverage, total coverage, aboveground biomass ratio and soil structure. The moisture content at different depths of the soil was detected using a time domain reflectometer (TDR). A set of soil samples was collected at a depth of 0-100 cm at each sample site. An EKKO100 ground-penetrating radar detector was used to continuously sample 1-1.5 km long sections parallel to the road to determine the upper limit depth of the frozen soil. 3. Predicted data: The temperature of the frozen soil at different depths and times was predicted in response to temperature increases of 1 degree and 2 degrees over the next 50 years based on initial surface temperatures of -0.5, -1.5, -2.5, -3.5, and -4.5 degrees. 4. The frozen soil parameters of the Qinghai-Tibet Railway were as follows: location, railway mileage, total mileage (km), frozen soil type mileage, mileage of zones with an average temperature conducive to permafrost, frozen soil with high temperatures and high ice contents, frozen soils with high temperatures and low ice contents, frozen soils with low temperatures and high ice contents, frozen soils with low temperatures and low ice contents, and melting area.
MA Wei, WU Qingbai
The interaction mechanism project between major road projects and the environment in western mountainous areas belongs to the major research plan of "Environment and Ecological Science in Western China" of the National Natural Science Foundation. The person in charge is Cui Peng researcher of Chengdu Mountain Disaster and Environment Research Institute, Ministry of Water Resources, Chinese Academy of Sciences. The project runs from January 2003 to December 2005. Data collected for this project: Engineering and Environmental Centrifugal Model Test Data (word Document): Consists of six groups of centrifugal model test data, namely: Test 1. Centrifugal Model Test of Soil Cutting High Slope (6 Groups) Test 2. Centrifugal Model Experiment of Backpressure for Slope Cutting and Filling (4 Groups) Test 3. Centrifugal Model Experimental Study on Anti-slide Piles and Pile-slab Walls (10 Groups) Test 4. Centrifugal Model Tests for Different Construction Timing of Slope (5 Groups) Test 5. Migration Effect Centrifugal Model Test (11 Groups) Test 6. Centrifugal Model Test of Water Effect on Temporary Slope (8 Groups) The purpose, theoretical basis, test design, test results and other information of each test are introduced in detail.
CUI Peng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn