The global high-resolution simulated near sea surface temperature precipitation SST data set from 1990 to 2020 is from the latest cmip6 project. Cmip6 is the sixth climate model comparison program organized by the world climate research project (WCRP). Original data source: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 The data set includes the global near ocean surface temperature (TMP), precipitation (PR) and sea surface temperature (TOS). The air temperature and precipitation data include the rectangular combination of shared social economic path (SSP) and representative concentration path (RCP) of four different experimental scenarios of scenario MIP in cmip6. (1) Ssp126: upgrade rcp2.6 scenario based on ssp1 (low forcing scenario) (radiation forcing will reach 2.6w/m2 in 2100). (2) Ssp245: upgrade rcp4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 w / m2 in 2100). (3) Ssp370: a new rcp7.0 emission path based on ssp3 (medium forcing scenario) (radiation forcing will reach 7.0 w / m2 in 2100). (4) Ssp585: upgrade rcp8.5 scenario based on ssp5 (high forcing scenario) (ssp585 is the only SSP scenario that can make radiation forcing reach 8.5 w / m2 in 2100). SST data provides ssp126 scenario data.
YE Aizhong
This data set is the global high accuracy global elevation control point dataset, including the geographic positioning, elevation, acquisition time and other information of each elevation control point. The accuracy of laser footprint elevation extracted from satellite laser altimetry data is affected by many factors, such as atmosphere, payload instrument noise, terrain fluctuation in laser footprint and so on. The dataset extracted from the altimetry observation data of ICESat satellite from 2003 to 2009 through the screening criteria constructed by the evaluation label and ranging error model, in order to provide global high accuracy elevation control points for topographic map or other scientific fields relying on good elevation information. It has been verified that the elevation accuracy of flat (slope<2°), hilly (2°≤slope<6°), and mountain (6°≤slope<25°) areas meet the accuracy requirements of 0.5m, 1.5m, and 3m respectively.
XIE Huan, LI Binbin, TONG Xionghua, TANG Hong, LIU Shijie, JIN Yanmin, WANG Chao, YE Zhen, CHEN Peng, XU Xiong, LIU Sicong, FENG Yongjiu
The surface elevation of the ice sheet is very sensitive to climate change, so the elevation change of the ice sheet is considered as an important variable to evaluate climate change. The time series of long-term ice sheet surface elevation change has become a fundamental data for understanding climate change. The longest time series of ice sheet surface elevation can be established by combining the observation records of radar satellite altimetry missions. However, the previous methods for correcting the intermission bias still have error residue when cross-calibrating different missions. Therefore,we modify the commonly used plane-fitting least-squares regression model by restricting the correction of intermission bias and the ascending–descending bias at the same time to ensure the self-consistency and coherence of surface elevation time series across different missions. Based on this method, we use Envisat and CryoSat-2 data to construct the time series of Antarctic ice sheet elevation change from 2002 to 2019. The time series is the monthly grid data, and the spatial grid resolution is 5 km×5 km. Using airborne and satellite laser altimetry data to evaluate the results, it is found that compared with the traditional method, this method can improve the accuracy of intermission bias correction by 40%. Using the merged elevation time series, combining with firn densification-modeled volume changes due to surface processes, we find that ice dynamic processes make the ice sheet along the Amundsen Sea sector the largest volume loss of the Antarctic ice sheet. The surface processes dominate the volume changes in Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.
ZHANG Baojun, WANG Zemin, YANG Quanming, LIU Jingbin, AN Jiachun, LI Fei, GENG Hong
This dataset (version 1.5) is derived from the complementary-relationship method, with inputs of CMFD downward short- and long-wave radiation, air temperature, air pressure, GLASS albedo and broadband longwave emissivity, ERA5-land land surface temperature and humidity, and NCEP diffuse skylight ratio, etc. This dataset covers the period of 1982-2017, and the spatial coverage is Chinese land area. This dataset would be helpful for long-term hydrological cycle and climate change research. Land surface actual evapotranspiration (Ea),unit: mm month-1. The spatial resolution is 0.1-degree; The temporal resolution is monthly; The data type is NetCDF; This evapotranspiration dataset is only for land surface.
MA Ning, MA Ning, Jozsef Szilagyi, ZHANG Yinsheng, LIU Wenbin
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from August 31 to December 24, 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This dataset contains the flux measurements from the Qinghai Lake eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 2 to October 18 in 2018. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The EC was installed at a height of 16.1m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during October 13 to December 31, 2018 were absent due to the unavailable collecting condition in winter. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from September 2 to December 18 in 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-The documents of the west of Taolai River water conservancy team project plan 1. Data summary: The documents of the west of Taolai River water conservancy team project plan 2. Data content: Taolai River water conservancy team project plan, including the project plan of reservoir irrigation and drainage in the west of the river region
WANG Zhongjing
Five different altitude zones were selected for this test. Their altitude, latitude and longitude are 3650 meters above sea level, latitude and longitude 99°55'24 E, 38°24'60" N; altitude of 3550 meters, latitude and longitude 99°55'28 E, 38°25'11" N; 3450 meters above sea level, longitude and latitude 99°55'38 E, 38°25'68" N; 3350 meters above sea level, longitude and latitude 99°55'37 E, 38°25'11" N; 3050 meters above sea level, longitude and latitude 99°55'42 E, 38°25'54" N. From May 31 to August 31, 2011, in the case of natural rainfall, the total rainfall was measured once every ten days using a rain gauge on five samples. To compare the difference in rainfall at different altitudes, it is necessary to combine the rainfall data observed by the project at the grassland weather station in 2011.
ZHAO Chuanyan, MA Wenying
The annual report (2008 and 2009) of the Zhangye water conservancy bureau included: (1) the water management staff statistics; (2) irrigation statistics; (3) projects status statistics; (4) project management statistics; (5) the technical and economic index of the irrigation area management; (6) water management tasks status statistics; (7) water management planning index. Those provide reliable information for water resources analysis in the middle stream.
Zhangye Water Conservancy Bureau,
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn