The data set records the water quality evaluation results of the monitoring sections of the Yangtze River, Yellow River and Huangshui (2010-2012). The data is collected from Yushu ecological environment bureau. The data set contains 18 files, which are: water quality assessment of national control section of Yangtze River in April 2010, water quality assessment of national control section of Yangtze River in May 2010, water quality assessment of national control section of Yangtze River in September 2010, water quality assessment of national control section of Yangtze River in October 2010, etc. the data table structure is the same. There are seven fields in each data table Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Ecological Environment Bureau of Yushu Prefecture
The data set records the main distribution of sudden geological disasters in Qinghai Province from 2011 to 2018. The data are collected from the Department of ecological environment of Qinghai Province. The data set contains seven tables, which are: the main distribution of sudden geological disasters in 2011, 2012, 2014, 2015 and 2016 Distribution statistics table, 2017 Qinghai Province sudden geological disasters distribution table, 2018 Qinghai Province sudden geological disasters distribution table, the data table structure is the same. Each data table has five fields, such as the statistical table of the main distribution of sudden geological disasters in Qinghai Province in 2016 Field 1: county (city) Field 2: landslide Field 3: collapse Field 4: debris flow Field 5: loess collapsibility
Department of Ecology and Environment of Qinghai Province
The data set records the operation of the pollution source monitoring center in Haixi Prefecture of Qinghai Province from July 2018 to September 2019. The data is collected from the Department of ecological environment of Haixi Prefecture. The data set contains 42 text files, recording the weekly report of Haixi pollution source monitoring center from July 2018 to September 2019, and each file records the content of the weekly report once. Including the video monitoring system operation, online monitoring system operation, new online monitoring system construction acceptance, online monitoring system construction acceptance, online monitoring data analysis and transmission efficiency. Data coverage time range: July 16, 2018 to September 1, 2019.
Ecological Environment Bureau of Haixi Prefecture Qinghai Province
The data set records the statistical table of groundwater level dynamic changes in various monitoring areas of Qinghai Province from 2015 to 2018. The data are recorded from the Department of natural resources of Qinghai Province, and the data set contains four data tables, which are: the statistical table of groundwater level dynamic change in each monitoring area of Qinghai Province in 2015, the statistical table of groundwater level dynamic change in each monitoring area of Qinghai Province in 2016, the statistical table of groundwater level dynamic change in each monitoring area of Qinghai Province in 2017, and the statistical table of groundwater level dynamic change in each monitoring area of Qinghai Province in 2018 The data table has the same structure and contains 7 fields Field 1: "geographic location" Field 2: "basic balance area (km2)" Field 3: "percentage of monitoring area (%)" Field 4: "weak descent area (km2)" Field 5: "percentage (%) of monitored area" Field 6: "strong uplift area (km2)" Field 7: "percentage (%) of monitored area"
Department of Natural Resources of Qinghai Province
The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of the Yangtze River (in the south of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of Yellow River (in the north of Zaling Lake, Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
The dataset is the ground verification point dataset of land cover and vegetation type in the Hoh Xil (in the northwest of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
This data set includes meteorological data observed by the carbon flux station in the Guoluo Army Ranch in Qinghai. The temporal coverage is from 2005 to 2009, and the temporal resolution is 1 day. Meteorological and carbon flux data observation methods: vorticity-related observation instruments were used for automatic recording; biomass observation method: harvest method, weighing in a 60-degree oven for 48 hours. Both carbon flux and meteorological data were automatically recorded by the instruments and manually checked. During the data observation process, the operation of the instrument and the selection of the observation objects were in strict accordance with professional requirements, and the data could be applied to plant leaf photosynthetic parameter simulation and productivity estimation. This data contains observation items as follows: Temperature °C Precipitation mm Wind speed m/s Soil temperature at 5 cm depth °C Photosynthetically active radiation µmol/m²s Total radiation W/m²
ZHAO Xinquan
The main body of the Tibetan Plateau is Qinghai Province and the Tibetan Autonomous Region. The economic and social data of Qinghai Province and the Tibetan Autonomous Region are the basis for the analysis and assessment of the basic data of sustainable development of populations, resources, environment and economic society on the Tibetan Plateau by integrating the basic data of natural sciences. Under normal circumstances, the statistical yearbooks of all provinces and regions are all in paper and CD-ROM versions, and users need to perform secondary editing before they can use them. This data set mainly relies on the raw data of the Statistical Yearbook of Qinghai Province and the Tibetan Autonomous Region to carry out data conversion and integrate the current economic and social data sets. The temporal coverage of the data is from 2007 to 2016, and the temporal resolution is one year. The spatial coverage is Qinghai Province and the Tibetan Autonomous Region of the Tibetan Plateau. The spatial resolution is the administrative unit of the prefecture or city. The data include information on population, economy, finance, agriculture, forestry, animal husbandry and fishery, investment in fixed assets, education and health.
WANG Shijin
The data are a digitized permafrost map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al. 1983), which was compiled by Boliang Tong, shude Li, Jueying bu, and Guoqing Qiu from the Cold and Arid Regions Environmental and Engineering Research Institute of the Chinese Academy of Sciences (originally called the Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences) in 1981. The map aims to reflect the basic laws of permafrost distribution along the highway and its relationship with the main natural environmental factors. The basic data for the compilation of the map include hydrogeological and engineering geological survey results and maps along the Qinghai-Tibet Highway(1:200000) (First Hydrogeological Engineering Geological Brigade of Qinghai Province, Institute of Geomechanics of the Academy of Geological Science), the cryopedological research results of the Institute of Glaciology and Cryopedology of Chinese Academy of Sciences since 1960 in nine locations along the Qinghai-Tibet Highway (West Datan, Kunlun pass basin, Qingshuihe, Fenghuohe, Tuotuohe, the Sangma Basin, Buquhe, Tumengela, and Liangdaohe) and drilling data of the Golmud-Lhasa oil pipeline and aerial topographic data of the work area. Taking the 1:200000 topographic map as the working base map, a permafrost map was compiled, which was then downscaled to a 1:600000 map to ensure the accuracy of the map. To make up for the lack of data in a larger area along the line, the characteristics and principles of the frozen soils found in the nine frozen soil research points along the highway were applied to areas with the same geologic and geographical conditions; meanwhile, aerial photographs were used as supplements to the freeze-thaw geology and frozen soil characteristics. The permafrost map along the Qinghai-Tibet Highway (1:600,000) includes the annual average temperature contour map along the Qinghai-Tibet Highway (1:7,200,000) and the permafrost map along the Qinghai-Tibet Highway (1:600,000). The permafrost map along the Qinghai-Tibet Highway also contains information on permafrost types, lithology, frozen soil phenomena, types of through-melting zones, classification of frozen soil engineering, and geological structural fractures. These data contain only digitized permafrost information. The spatial coverage is from Daxitan on the Qinghai-Tibet Highway in the north to Sangxiong in the south and is nearly 800 kilometers long and 40-50 kilometers wide. The data set includes a vectorized and a scanned map of the permafrost map along the Qinghai-Tibet Highway. The attribute information of the map is as follows. A-1; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer A-2; Continuous permafrost; 0~-0.5°C; 0-25 m A-3; Continuous permafrost; -0.5~-1.5°C; 25-60 m A-4; Continuous permafrost; -1.5~-3.5°C; 60-120 m A-5;Continuous permafrost;<-3.5°C;>120 m B-1; Island permafrost ground; Seasonal Frozen Ground; B-2; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer B-3; Island permafrost extent; 0~-0.5°C; 0-25 m B-4; Island permafrost extent; -0.5~-1.5°C; 25-60 m B-5; Island permafrost extent; -1.5~-3.5°C; 60-120 m
TONG Boliang, LI Shude, BO Jueying, QIU Guoqing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn