The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in in No. 2 and 3 quadrates of the A'rou foci experimental areas on Mar. 15, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:35 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Only corner points of each subsite were chosen for observations. In No. 2 quadrate, simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In No. 3 quadrate, simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, soil volumetric moisture by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in No. 1 quadrate of A'rou. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
CAO Yongpan, GU Juan, HAN Xujun, LI Zhe, Wang Weizhen, WU Yueru, LI Hua, YU Meiyan, ZHAO Jin, PATRICK Klenk, YUAN Xiaolong
The dataset of crop biochemical parameter measurements was obtained in the maize field (May 25-Jun. 8, 2008) and the wheat field (Jun. 18-Jul. 4, 2008) of Yingke oasis foci experimental area. Observation items included LAI by LAI-2000, the chlorophyll content by SPAD and leaf moisture by the oven and the scales. Four files were included, readme.txt, wheat sample coordinates.xls, wheat.xls for wheat biochemical parameters and Yingke oasis maize field.xls for maize biochemical parameters.
DONG Jingjing, GAO Shuai, WU Mingquan, WU Chaoyang
The dataset of ground truth measurements synchronizing with ASTER was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 28, 2008. Observation items included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Photosynthesis by LI-6400. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (5) the radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 using ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), 3 for maize canopy, the bare land and wheat canopy in Yingke oasis maize field, one for maize canopy in Huazhaizi desert maize field, and 2 for vegetation and the desert bare land in Huazhaizi desert No. 2 plot,at nadir at a time interval of one second. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format. (9) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (10) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), Huazhaizi desert maize field (the transect observation) and Huazhaizi desert No. 2 plot (the diagonal observation) by the handheld infrared thermometer (BNU and Institute of Remote Sensing Applications). Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived.
CHAI Yuan, CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jianhua, SHU Lele, LI Li, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, ZHOU Mengwei, TAO Xin, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurements synchronizing with PROBA CHRIS was obtained in the Biandukou foci experimental area on Jun. 22, 2008. Observation items included: (1) quadrates investigation including GPS by GARMIN GPS 76, species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, the chlorophyll content by SPAD 502, the coverage by manual work and the biomass (samples from 0.5m×0.5m) by wet weight and dry weight. Data were archived as Excel files. (2) LAI of maize, desert scrub and the poplar by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (as Excel files). For more details, see Readme file. (3) ground object spectrum of grassland, barley and the rape by ASD FieldSpec (350~2 500 nm) from BNU, with 20% reference board. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt. (4) BRDF of grassland, barley and the rape by ASD FieldSpec (350~2 500 nm), with 20% reference board. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail. The processed reflectance and transmittivity were archived in .txt files. The dataset includes processed spectrum data, soil moisture, BRDF, quadrates investigation, integrating spheres data on the rape, LAI, CHRIS data and the fisheye camera data.
DING Songchuang, HAO Xiaohua, YU Yingjie
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area on Oct. 18, 2007, during the pre-observation period. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected: the soil temperature , volumetric soil moisture (cm^3/cm^3), soil salinity (s/m), soil conductivity (s/m) by the Hydra probe, the surface radiative temperature by the handheld infrared thermometer, gravimetric soil moisture, volumetric soil moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for the development and validation of soil moisture, soil freeze/thaw algorithms and the forward model from active remote sensing approaches.
BAI Yunjie, CAO Yongpan, WANG Jian, Wang Weizhen, WANG Xufeng, JIN Rui, Qu Yonghua, ZHOU Hongmin
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.
CHANG Sheng, CHANG Yan, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurements synchronizing with Envisat ASAR and ALOS PALSAR was obtained in the Linze station foci experimental area on May 24, 2008. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. Observation items included: (1) soil moisture (0-5cm) measured once by cutting ring method at corner points of the 40 subplots of the west-east desert transit zone strip, one time by cutting ring method in nine subplots of the north-south desert transit zone, strip and once by the cutting ring and three times by ML2X Soil Moisture Tachometer in the center points of nine subplots of Wulidun farmland quadrates . The preprocessed soil volumetric moisture data were archived as Excel files. (2) surface radiative temperature by measured two handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute which were both calibrated) in 40 subplots of the west-east desert transit zone strip (repeated 14-30 times each), and nine subplots of the north-south desert transit zone strip (repeated 12-30 times). There are 34 sample points in total and each was repeated three times synchronizing with the airplane. Photos were taken. Data were archived as Excel files. (3) LAI, the plant height and the spacing measured by the ruler and the set square in Wulidun farmland quadrates and Linze station quadrates. Part of the samples were also measured by LI-3100. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.
BAI Yanfen, DING Songchuang, PAN Xiaoduo, WANG Yang, ZHU Shijie, LI Jing, XIAO Zhiqiang, SUN Jinxia
The dataset of intensive rain gauges observations was obtained in the arid region hydrology experiment area, in cooperation with dual polarized doppler radar observations. There was no single dataset for the upper stream observations for the poor quality; the middle stream dataset was collected by 29 RG3-M self-recording rain gauges: the northernmost (100.36°E, 39.16°N), the southernmost (100.34°E, 38.61°N), the easternmost (100.62°E, 38.87°N), and the westernmost (100.26°E, 38.82°N). Rain gauges R02-R09 measured from May 18 to Oct. 9, 2008, and R10-R30 from May 26 to Oct. 9, 2008. The technique criterions of these rain gauges were : (1) caliber: 165mm×254mm (2) the temperature range: 0°C —+70°C (3) resolution: 0.2mm (4) the measuring range: 0—320cm (5) the measuring accuracy: 1%
CHU Rongzhong, ZHAO Guo
The dataset of surface roughness measurements was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area during the pre-observation period. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. The original photos of each sampling point, surface height standard deviation (cm) and correlation length (cm) were included. With the roughness grid board 110cm long and the measuring intervals of 1cm, the samples were collected along the soil surface from south to north and from east to west, respectively. The coordinates of sample points would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing, Vol. II. The roughness data files were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each .txt file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 needles is also included for further checking. Those provide reliable ground data for improving and verifying the microwave remote sensing algorithms.
CAO Yongpan, CHAO Zhenhua, CHE Tao, QIN Chun, WU Yueru
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in the saline plot B, the alfalfa plot D and the barley plot E of the Linze grassland foci experimental area on May 24, 2008. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. The quadrate was divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Corner points were chosen. Simultaneous with the satellite overpass, numerous ground data were collected, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3), the mean soil temperature from 0-5cm by the probe thermometer, and the land surface radiative temperature measured three times by the hand-held infrared thermometer in plot B; soil moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by WET, the mean soil temperature from 0-5cm by the probe thermometer, and the land surface radiative temperature measured three times by the hand-held infrared thermometer in plot D; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, and the land surface radiative temperature measured three times by the hand-held infrared thermometer in plot E. Data were archived in Excel file. Those provide reliable ground data for retrieval and validation of soil moisture and alinity content with active microwave remote sensing approaches. See WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area for more information.
CHAO Zhenhua, HU Xiaoli, LIANG Ji, Wang Weizhen, LIU Zhaoyan, TANG Bohui, HAN Hui, WANG Xiaoping
The dataset of precipitation and canopy interception observations was obtained in the Pailugou watershed foci experimental area from Jul. 4 to Sep. 28, 2007, and May 8 to Sep. 27, 2008, respectively. 18 interception slots were set in three plots and the detailed information was as follows: Plot number slot number in the Qinghai spruce forest Ⅰ 1, 2, 3, 4, 5, 6 Ⅱ 7, 8, 9, 10, 11, 12 Ⅲ A, B, C, D, E, F Observation items included controlled rainfall, the forest throughfall, the stem flow and the moss and litter interception barrel throughfall.
WANG Shunli, LUO Longfa, JING Wenmao, WANG Rongxin, ZHANG Xuelong, NIU Yun
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in No. 2 and 3 quadrates of the A'rou foci experimental area on Jun. 23, 2008. Observation items included: (1) quadrates investigation including GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. Data were archived in Excel format. (2) roughness by the self-made roughness board and the camera. The processed data were archived as .txt files. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board and the observation platform made by Beijing Normal University. The processed reflectance and transmittivity were archived as .txt files. (4) LAI of stellera and pasture by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in Excel). For more details, see Readme file. Five files were included, spectrum in No.2 quadrate, multiangle observations in No.2 and 3 quadrates, roughness photos in No.2 and 3 quadrates, the fisheye camera observations, and the No.2 and 3 quadrates investigation.
CAO Yongpan, DING Songchuang, HAO Xiaohua, DONG Jian, Qu Yonghua, YU Yingjie
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the E'bao foci experimental area on Oct. 18, 2007 during the pre-observation period. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT (Beijing Time). Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by the WET soil moisture tachometer; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and verification of soil moisture, soil freeze/thaw status and the microwave radiative transfer model from active remote sensing approaches.
CHAO Zhenhua, CHE Tao, QIN Chun, WU Yueru
The dataset of ground truth measurements synchronizing with EO-1 Hyperion was obtained in the Yingke oasis foci experimental area from Sep. 5 to Sep. 10, 2007 during the pre-observation period. It was carried out by the 3rd and 2nd sub-projects of CAS’s West Action Plan along Zhangye city-Yingke oasis-Huazhaizi, and on the very day of 10, one scene of Hyperion was captured. sampling plot time north latitude east longitude elevation notes 1 9:58 38°53′53.2″ 100°26′09.7″ 1500 cauliflower land east to the road 2 10:51 38°52′39.8″ 100°25′33.1″ 1510 cabbage land east to the road 3 11:35 38°52′39.0″ 100°25′34.6″ 1510 east to No. 2 sampling plot, maize and intercropping wheat reaped 4 12:24 38°51′53.0″ 100°25′08.0″ 1510 maize seed 5 13:08 38°51′54.2″ 100°25′09.5″ 1520 north to No. 4 sampling plot, maize and intercropping wheat reaped 6 14:40 38°51′23.5″ 100°24′45.0″ 1510 west to the road, maize seed, serious blights (red spider) 7 15:40 38°49′26.6″ 100°23′23.7″ 1540 intercrop land of sea buckthorn and beet 8 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land, rich of amaranth weeds 9 16:18 38°49′06.4″ 100°23′30.8″ 1540 beet land 10 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land with less weeds 11 10:30 38°48′28.3″ 100°24′11.4″ 1540 sea buckthorn seedling land west to the road 12 11:24 38°48′09.3″ 100°24′10.1″ 1550 sun flower land east to the road, intercropping wheat reaped 13 12:38 38°46′16.3″ 100°23′14.2″ 1600 dry rice land 14 12:45 38°46′16.2″ 100°23′14.0″ 1600 rape land 15 12:54 38°46′15.6″ 100°23′13.8″ 1600 buckwheat land 16 14:52 38°45′55.5″ 100°23′00.1″ 1610 maize (without intercrop) 17 15:28 38°45′57.5″ 100°22′28.3″ 1630 maize (without intercrop) 18 16:20 38°43′17.3″ 100°22′53.4″ 1730 gobi (Bassia dasyphylla and margarite dominate) 19 17:40 38°42′31.8″ 100°22′56.8″ 1780 gobi (Bassia dasyphylla and Sympegma regelii dominate) 20 10:27 38°36′25.1″ 100°20′33.2″ 2260 wheatgrass dominates 21 11:10 38°36′24.4″ 100°20′38.1″ 2260 abandoned composite land 22 11:30 2260 near site 22, wheatgrass and composite cenosis 23 bare land 24 13:09 38°38′46.3″ 100°23′08.5″ 2030 alfalfa land 25 14:39 38°44′30.8″ 100°22′41.0″ 1660 poplar 26 9:47 38°58′11.4″ 100°26′18.3″ 1460 rice land Observation items included: (1) quadrat surveys (2) LAI by LAI-2000 (3) ground object reflectance spectra by ASD FieldSpec Pro (350-2500nm)from Gansu Meteorological Administration (4) the land surface temperature and the canopy radiative temperature by the hand-held thermal infrared sensor (5) the photosynthesis rate by LI-6400 (6) the radiative temperature by ThermaCAM SC2000 (7) Atmospheric parameters by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S codes (8) chlorophyll consistency by portable SPAD Those provide reliable ground data for developing and validating retrieval meathods of biophysical parameters from EO-1 Hyperion images.
MA Mingguo, LI Xin, SU Peixi, DING Songchuang, GAO Song, YAN Qiaodi, ZHANG Lingmei, WANG Xufeng, Qian Jinbo, BAI Yunjie, HAO Xiaohua, Liu Qiang, Wen Jianguang, XIN Xiaozhou, WANG Xiaoping, HAN Hui
The dataset of airborne LiDAR mission in the Dayekou flight zone on Jun. 20, 2008 included peak pulse data (*.LAS), full waveform data (.lgc), CCD photos, DEM, DSM and DOM. The DEM, DSM and DOM data are stored along with the Dataset of airborne LiDAR mission in the Dayekou flight zone on Jun. 23, 2008. The flight routes were as follows: {| ! flight route ! startpoint lat ! startpoint lon ! endpoint lat ! endpoint lon ! altitude (m) ! length (km) ! photos |- | 1 || 38°32′05.38″ || 100°12′24.59″ || 38°29′32.76″ || 100°18′35.69″ || 3650 || 10.1 || 49 |- | 2 || 38°32′11.13″ || 100°12′28.42″ || 38°29′42.06″ || 100°18′30.89″ || 3650 || 9.9 || 46 |- | 3 || 38°32′16.88″ || 100°12′32.24″ || 38°29′47.81″ || 100°18′34.72″ || 3650 || 9.9 || 47 |- | 4 || 38°32′22.63″ || 100°12′36.07″ || 38°29′56.20″ || 100°18′32.15″ || 3650 || 9.7 || 45 |- | 5 || 38°32′28.38″ || 100°12′39.90″ || 38°30′02.62″ || 100°18′34.33″ || 3650 || 9.7 || 47 |- | 6 || 38°32′37.44″ || 100°12′35.66″ || 38°30′10.63″ || 100°18′32.68″ || 3650 || 9.8 || 44 |- | 7 || 38°32′46.50″ || 100°12′31.43″ || 38°30′19.72″ || 100°18′28.37″ || 3650 || 9.8 || 47 |}
NI Wenjian, BAO Yunfei, ZHOU Mengwei, WANG Tao, CHI Hong, FAN Fengyun, LIU Qingwang, PANG Yong, LI Shiming, HE Qisheng, Liu Qiang, LI Xin, MA Mingguo
The dataset of continuous LST (Land Surface Temperature) observation was obtained by the automatic thermometer in the Linze grassland foci experimental area. Six devices numbered from #1 to #6 were used. Observations were carried out in the reed plot A, the saline plots B and C, the alfalfa plot D, the barley plot E and the temporary farmland on Jun. 10 and 11, 2008 and in plots A, B and E on Jul. 11, 2008. Observation time and the land surface radiative temperature were archived in Word, txt and Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental of Linze station area for more information.
HUANG Chunlin, CHAO Zhenhua, GE Chunmei, HU Xiaoli, LIU Chao, NIAN Yanyun, WANG Shuguo, WANG Xufeng, WU Yueru, WANG Jing
The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Mar. 10 to 30, 2008, in cooperation with simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth; (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. 13 files are archived, and the user guide of the sampling plot and observation background is included too.
HAO Xiaohua, LIANG Ji, LI Zhe
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the A'rou foci experimental area on Jul. 22, 2008. The stellera coverage was mainly measured by photo taking. (1) Stellera coverage was measured by photo taking in 10 quadrates (51m×51m). Each quadrate was divided into 17×17 subsites, with each one spanning a 3×3 m2 plot. Only corner points of each subsite were chosen and 324 photos were taken for each quadrate. Photos were taken by Nikon D80 with a lens of 18-135mm, shooting straight downwards at the height of 1.5m. (2) quadrates investigation including GPS by GARMIN GPS 76, species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the biomass (samples from 0.5m×0.5m) by green weight and dry weight. Data were archived in Excel format. The dataset includes TM images, quadrate coverage investigation photos, GPS positions, coverage files and investigation tables.
CAO Yongpan, LI Hongxing, LIU Chao, MA Mingguo, Qian Jinbo, RAN Youhua
The dataset of airborne imaging spectrometer (OMIS-II) mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jun. 16, 2008. Data after radiometric correction and calibration and geometric approximate correction were released. The flying time of each route was as follows: {| ! id ! flight ! file ! starttime ! lat ! long ! alt ! image linage ! endtime ! lat ! long ! alt |- | 1 || 3-1 || 2008-06-16_14-26-53_DATA.BSQ || 14:44:01 || 38.992 || 100.446 || 3250.7 || 6698 || 14:51:28 || 38.744 || 100.286 || 3237.7 |- | 2 || 3-2 || 2008-06-16_14-52-37_DATA.BSQ || 14:55:47 || 38.731 || 100.284 || 3214.9 || 7202 || 15:03:47 || 38.981 || 100.445 || 3237.6 |- | 3 || 3-3 || 2008-06-16_15-04-57_DATA.BSQ || 15:09:29 || 38.989 || 100.457 || 3230.2 || 6740 || 15:16:58 || 38.739 || 100.297 || 3236.0 |- | 4 || 3-4 || 2008-06-16_15-18-07_DATA.BSQ || 15:21:19 || 38.728 || 100.296 || 3200.6 || 7256 || 15:29:23 || 38.979 || 100.457 || 3170.8 |- | 5 || 3-5 || 2008-06-16_15-30-32_DATA.BSQ || 15:35:06 || 38.983 || 100.466 || 3221.9 || 6627 || 15:42:28 || 38.736 || 100.307 || 3227.9 |- | 6 || 3-6 || 2008-06-16_15-43-37_DATA.BSQ || 15:47:39 || 38.726 || 100.308 || 3249.2 || 7013 || 15:55:27 || 38.975 || 100.467 || 3219.1 |- | 7 || 3-7 || 2008-06-16_15-56-36_DATA.BSQ || 16:00:46 || 38.981 || 100.476 || -1.0 || 6639 || 16:08:09 || 38.732 || 100.317 || 3276.8 |- | 8 || 3-8 || 2008-06-16_16-09-18_DATA.BSQ || 16:13:15 || 38.723 || 100.317 || 3212.7 || 7106 || 16:21:09 || 38.973 || 100.479 || 3216.1 |- | 9 || 3-9 || 2008-06-16_16-22-18_DATA.BSQ || 16:26:28 || 38.981 || 100.490 || 3218.6 || 6850 || 16:34:05 || 38.725 || 100.325 || 3235.9 |- | 10 || 3-10 || 2008-06-16_16-35-14_DATA.BSQ || 16:39:23 || 38.716 || 100.326 || 3261.3 || 7056 || 16:47:14 || 38.967 || 100.488 || 3208.4 |- | 11 || 3-11 || 2008-06-16_16-48-23_DATA.BSQ || 16:52:44 || 38.976 || 100.501 || 3204.8 || 6902 || 17:00:24 || 38.725 || 100.338 || 3230.1 |- | 12 || 3-12 || 2008-06-16_17-01-33_DATA.BSQ || 17:05:19 || 38.710 || 100.336 || 3253.8 || 7033 || 17:13:08 || 38.965 || 100.500 || 3225.6 |- | 13 || 3-13 || 2008-06-16_17-14-17_DATA.BSQ || 17:19:01 || 38.973 || 100.511 || 3224.8 || 6831 || 17:26:36 || 38.722 || 100.349 || 3230.1 |- | 14 || 3-14 || 2008-06-16_17-27-46_DATA.BSQ || 17:32:06 || 38.706 || 100.346 || 3233.7 || 3235 || 17:35:44 || 38.830 || 100.426 || 3235.1 |- | 15 || 3-15 || 2008-06-16_17-36-54_DATA.BSQ || 17:35:51 || 38.8334 || 100.428 || 3235.8 || 3625 || 17:39:52 || 38.963 || 100.511 || 3250.6 |}
Liu Liangyun, LI Xin, MA Mingguo
The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in L2, L4 and L5 of the A'rou foci experimental area on Mar. 19, 2008. The samples were collected every 100 m along the strip from south to north. In L2, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L4, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in L6 and the handheld thermal imager observations in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
CAO Yongpan, GU Juan, HAN Xujun, LI Zhe, WANG Jianhua, Wang Weizhen, WU Yueru, ZHOU Hongmin, LI Hua, CHANG Cun, YU Meiyan, ZHAO Jin, PATRICK Klenk, SUN Jicheng, YAN Yeqing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn