This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.
Sharad Prasad Joshi, Samjwal Ratna Bajracharya Samjwal Ratna Bajracharya
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
International Centre for Integrated Mountain Development (ICIMOD) , United Nationenvironment Programme/Regional Resourc Centre, Asia and The Pacific (UNEP/RRC-AP)
This data set includes the microwave brightness temperatures obtained by the spaceborne microwave radiometer SSM/I carried by the US Defense Meteorological Satellite Program (DMSP) satellite. It contains the twice daily (ascending and descending) brightness temperatures of seven channels, which are 19H, 19V, 22V, 37H, 37V, 85H, and 85V. The Specialized Microwave Imager (SSM/I) was developed by the Hughes Corporation of the United States. In 1987, it was first carried into the space on the Block 5D-/F8 satellite of the US Defense Meteorological Satellite Program (DMSP) to perform a detection mission. In the 10 years from when the DMSP soared to orbit in 1987 to when the TRMM soared to orbit in 1997, the SSM/I was the world's most advanced spaceborne passive microwave remote sensing detection instrument, having the highest spatial resolution in the world. The DMSP satellite is in a near-polar circular solar synchronous orbit; the elevation is approximately 833 km, the inclination is 98.8 degrees, and the orbital period is 102.2 minutes. It passes through the equator at approximately 6:00 local time and covers the whole world once every 24 hours. The SSM/I consists of seven channels set at four frequencies, and the center frequencies are 19.35, 22.24, 37.05, and 85.50 GHz. The instrument actually comprises seven independent, total-power, balanced-mixing, superheterodyne passive microwave radiometer systems, and it can simultaneously measure microwave radiation from Earth and the atmospheric systems. Except for the 22.24 GHz frequency, all the frequencies have both horizontal and vertical polarization states. Some Eigenvalues of SSM/I Channel Frequency (GHz) Polarization Mode (V/H) Spatial Resolution (km * km) Footprint Size (km) 19V 19.35 V 25×25 56 19H 19.35 H 25×25 56 22V 22.24 V 25×25 45 37V 37.05 V 25×25 33 37H 37.05 H 25×25 33 85V 85.50 V 12.5×12.5 14 85H 85.50 H 12.5×12.5 14 1. File Format and Naming: Each group of data consists of remote sensing data files, .JPG image files and .met auxiliary information files as well as .TIM time information files and the corresponding .met time information auxiliary files. The data file names and naming rules for each group in the SSMI_Grid_China directory are as follows: China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V (remote sensing data); China-EASE-Fnn -ML/HaaaabbbA/D.ccH/V.jpg (image file); China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V.met (auxiliary information document); China-EASE-Fnn-ML/HaaaabbbA/D.TIM (time information file); and China-EASE- Fnn -ML/HaaaabbbA/D.TIM.met (time information auxiliary file). Among them, EASE stands for EASE-Grid projection mode; Fnn represents carrier satellite number (F08, F11, and F13); ML/H represents multichannel low resolution and multichannel high resolution; A/D stands for ascending (A) and descending (D); aaaa represents the year; bbb represents the Julian day of the year; cc represents the channel number (19H, 19V, 22V, 37H, 37V, 85H, and 85V); and H/V represents horizontal polarization (H) and vertical polarization (V). 2. Coordinate System and Projection: The projection method is an equal-area secant cylindrical projection, and the double standard latitude is 30 degrees north and south. For more information on EASE-GRID, please refer to http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/. If you need to convert the EASE-Grid projection method into a geographic projection method, please refer to the ease2geo.prj file, which reads as follows. Input Projection cylindrical Units meters Parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd Parameters End 3. Data Format: Stored as binary integers, Row number: 308 *166,each datum occupies 2 bytes. The data that are actually stored in this data set are the brightness temperatures *10, and after reading the data, they need to be divided by 10 to obtain true brightness temperature. 4. Data Resolution: Spatial resolution: 25 km, 12.5 km (SSM/I 85 GHz); Time resolution: day by day, from 1978 to 2007. 5. The Spatial Coverage: Longitude: 60°-140° east longitude; Latitude: 15°-55° north latitude. 6. Data Reading: Each group of data includes remote sensing image data files, .JPG image files and .met auxiliary information files. The JPG files can be opened with Windows image and fax viewers. The .met auxiliary information files can be opened with notepad, and the remote sensing image data files can be opened in ENVI and ERDAS software.
National Snow and Ice Data Center(NSIDC)
This glacial lake inventory receives joint support from International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 1. This glacial lake inventory referred to Landsat 4/5 (MSS, TM/1984/1999), Landsat 7 (TM & ETM+), IRS-1C, LISS-III (1995 IRS-1C), (1997 IRS-1D) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2000. 2. Glacial Lake Inventory Coverage: Tista Basin, Sikkim Region 3. Glacial Lake Inventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameter: Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Sikkim) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00’00” E Central parallel: 26°00’00” N Scale factor: 0.998786 Standard parallel 1: 23°09’28.17” N Standard parallel 2: 28°49’8.18” N Minimum X Value: 2545172 Maximum X Value: 2645240 Minimum Y Value: 1026436 Maximum Y Value: 1163523 For a detailed data description, please refer to the data file and report.
Samjwal Ratna Bajracharya Samjwal Ratna Bajracharya
The application of general circulation models (GCMs) can improve our understanding of climate forcing. In addition, longer climate records and a wider range of climate states can help assess the ability of the models to simulate climate differences from the present. First, we try to find a substitute index that combines the effects of temperature in different seasons and then combine it with the Beijing stalagmite layer sequence and the Qilian tree-ring sequence to carry out a large-scale temperature reconstruction of China over the past millennium. We then compare the results with the simulated temperature record based on a GCM and ECH-G for the past millennium. Based on the 31-year average, the correlation coefficient between the simulated and reconstructed temperature records was 0.61 (with P < 0.01). The asymmetric V-type low-frequency variation revealed by the combination of the substitute index and the simulation series is the main long-term model of China's millennium-scale temperature. Therefore, solar irradiance and greenhouse gases can account for most of the low-frequency variation. To preserve low-frequency information, conservative detrended methods were used to eliminate age-related growth trends in the experiment. Each tree-ring series has a negative exponential curve installed while retaining all changes. The four fields of the combined 1000-yr (1000 AD-2000 AD) reconstructed temperature records derived from stalagmite and tree-ring archives (excel table) are as follows: 1) Year 2) Annual average temperature reconstruction 3) Reconstructed temperature deviation 4) Simulated temperature deviation
TAN Ming
The parameter inversion study project of soil moisture and snow water equivalent on the Tibetan Plateau in the past 20 years is part of the key research plan of Environmental and Ecological Science for West China of the National Natural Science Foundation of China. The person in charge is Jiancheng Shi, a researcher at the Institute of Remote Sensing Applications of the Chinese Academy of Sciences. The project ran from January 2004 to December 2007. The data collection of the project: the Monthly MODIS Snow Cover Product of Tibetan Plateau (2001-2005). Based on the image data acquired by MODIS, combined with ASTER image data, the data set carried out snow cover area classification and change analysis at a subpixel level on the Tibetan Plateau. The research mainly focused on studying the subpixel snow cover area classification algorithm, including the statistical regression method and the mixed-pixel decomposition method using the normalized snow index. In the mixed-pixel decomposition, a linear mixed model was adopted, and snow and non-snow end members were automatically extracted using the normalized snow index and the normalized vegetation index. On the basis of the subpixel snow cover area classification algorithm, the snow cover area variation on the Tibetan Plateau was analyzed. Using the method of establishing a decision tree, clouds and snow were detected, cloud-removal was performed, and the subpixel of the Tibetan Plateau was formed by synthesis and mosaicking of the time series images. The snow cover area classification database analyzes and describes the spatial distribution and variation characteristics of the snow cover area of the Tibetan Plateau.
SHI Jiancheng, XU Lina
This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resources Centre for Asia and the Pacific (UNEP/RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute (CAREERI). 9. This glacial lake cataloging uses Landsat (TM and ETM), Aster and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in the Himalayas in 2004. 10. Glacial lake catalogue coverage: the Himalayan region, Pumqu (Arun), Rongxer (Tama Koshi), Poiqu (Bhote-Sun Koshi), Jilongcangbu (Trishuli), Zangbuqin (Budhigandaki), Majiacangbu (Humla Karnali) and others. 11. Glacial Lake cataloging includes glacial lake cataloging, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 12. Data projection information: Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 87.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: GCS_WGS_1984 Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.000000000000000000 Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000 For a detailed data description, please refer to the data file and report.
International Centre for Integrated Mountain Development (ICIMOD)
This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory incorporates topographic map data and reflects the status of glacial lakes in the region in 2000. 2. The spatial coverage of the glacial lake inventory is as follows: Pa Chu Sub-basin, Mo Chu Sub-basin, Thim Chu Sub-basin, Pho Chu Sub-basin, Mangde Chu Sub-basin, Chamkhar Chu Sub-basin, Kuri Chu Sub-basin, Dangme Chu Sub-basin, Northern Basin, etc. 3. The glacial lake inventory includes the following data fields: glacial lake code, glacial lake types, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length, etc. 4. Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00'' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.
International Centre for Integrated Mountain Development (ICIMOD)
The frozen soil type map of Kazakhstan (1:10,000,000) includes three .shp vector layers: 1, Polyline ranges.shp, indicating the extent of frozen soil; 2, Polygon kaz_perm.shp, frozen soil; 3, An attribute description Word file. The kaz_perm attribute table includes four fields: ID, REGION, SUBREGION, M_RANGE. Comparison of the main attributes: First, Area I. Altai-TienShan Second, Region: High mountains I.1. Altai, I.2. Saur-Tarbagatai, I.3.Dzhungarskyi, I.4. Northern Tien Shan, I.5. Western Tien Shan Intermountain depressions I.6. Zaysanskyi, I.7. Alakulskyi, I.8. Iliyskyi II. Western Siberian Second, Region: Planes II.1. Northern Kazakhstanskyi V. Western Kazakhstanskaya III. Kazakh small hills area IV. Turanskaya: IV.1. Turgayskyi IV.2. Near Aaralskyi IV.3. Chuysko-Syrdaryinskyi IV.4. South-Balkhashskyi V. Western Kazakhstanskaya: V.1. Mugodzhar-Uralskyi V.2. Near Caspian V.3. manghyshlak-Ustyrtskyi Third, Sub-region: I.1.1. Western Altai I.1.2. South Altai I.1.3. Kalbinskyi I.2.1. Tarbagatayskyi I.2.2. Saurskyi I.3.1. Nortern Dzhungarskyi I.3.2. Western Dzhungarskyi I.3.3. Southern Dzhungarskyi I.4.1. Kirgizskyi Alatau I.4.2. Zailiyskyi-Kungeyskyi I.4.3. Ketmenskyi I.4.4. Bayankolskyi I.5.1. Karatauskyi I.5.2. Talaso-Ugamskyi The layer projection information is as follows: GEOGCS["GCS_WGS_1984", DATUM["WGS_1984", SPHEROID["WGS_1984", 6378137.0, 298.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree",0.0174532925199433]] Different regions feature different frozen soil attributes, and the specific attribute information can be found in the Word file.
Sergei Marchenko
This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory adopts the Landsat remote sensing data and reflects the status of glacial lakes in the Pakistan region from 2003 to 2004. 2. In terms of spatial coverage, the glacial lake inventory covers the Swat, Chitral, Gilgit, Hunza, Shigar, Shyok, Upper, Indus, Shingo, Astor and Jhelum river basins in the upper reaches of the Indus River. 3. The glacial lake inventory data include the glacial lake code, glacial lake type, glacial lake area, distance between the glacier and the glacial lake, glaciers related to the glacial lake, etc. For detailed descriptions of the data, please refer to the data file and report.
Samjwal Ratna Bajracharya Samjwal Ratna Bajracharya, Basanta Shrestha, Sharad Prasad Joshi
This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1.The glacier inventory incorporates topographic map data, and reflects the status of glaciers in the region in 2000. 2.The spatial coverage of the glacier inventory includes the following: Pa Chu Sub-basin,Mo Chu Sub-basin,Thim Chu Sub-basin,Pho Chu Sub-basin,Mangde Chu Sub-basin, Chamkhar Chu Sub-basin,Kuri Chu Sub-basin,Dangme Chu Sub-basin,Northern Basin, etc. 3.The glacier inventory includes the following data fields: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4.Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.
International Centre for Integrated Mountain Development (ICIMOD)
The dataset of airborne WiDAS mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jul. 7, 2008. Intra-band data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections), Level-1B browse image (after intra-band matching) and Level-2B browse image (after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started in Aug. 2008 and ended in Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 3#15 || 1500m || 11:00:55 || 11:09:55 ||133 || processed; complete || good |- | 2 || 3#13 || 1500m || 11:14:40 || 11:23:45 || 136 || processed; complete || good |- | 3 || 3#11 || 1500m || 11:27:35 || 11:36:45 || 137 || processed; complete || good || the resort, Yingke weather station maize field and Yingke wheat field |- | 4 || 3#9 || 1500m || 11:40:55 || 11:50:20 || 137 || incomplete || incomplete || the wetland park, Zhangye city,Yingke weather station maize field, Yingke wheat field and Huazhaizi desert maize field |- | 5 || 3#9a || 1500m || 11:53:25 || 12:02:40 || 142 || processed; complete || good || the wetland park, Zhangye city,Yingke weather station maize field, Yingke wheat field and Huazhaizi desert maize field |- | 6 || 3#7 || 1500m || 12:07:10 || 12:16:35 || 119 || processed; complete || good |- | 7 || 3#5 || 1500m || 12:19:05 || 12:28:15 || 137 || processed; complete || good || Huazhaizi desert plot 1 |- | 8 || 3#3 || 1500m || 12:32:35 || 12:41:50 || 115 || processed; complete || good || Huazhaizi desert plot 2 |- | 9 || 3#1 || 1500m || 12:45:25 || 12:54:40 || 139 || processed; complete || good |- | 10 || 3#z1 || 1500m || 13:03:55 || 13:08:00 || 61 || processed; complete || good |- | 11 || 3#z2 || 1500m || 13:10:50 || 13:14:45 || 59 || processed; complete |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, Wang Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
The dataset of airborne WiDAS mission was obtained in the national observatory on climatology at Zhangye-Zhangye flight zone on Jun. 29, 2008. Intra-band data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections), Level-1B browse image (after intra-band matching) and Level-2B browse image (after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started in Aug. 2008 and ended in Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 2#5 || 1500m || 13:14:39 || 13:22:43 || 122 || processed;complete || good || National observatory on climatology at Zhangye;Gulou in Zhangye |- | 2 || 2#7 || 1500m || 13:28:23 || 13:35:31 || 108 || processed;complete || good |- | 3 || 2#9 || 1500m || 13:41:11 || 13:49:03 || 119 || processed;complete || good || wetland park in Zhangye |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, Wang Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
The dataset of airborne WiDAS mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jun. 29, 2008. Intra-band data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections), Level-1B browse image (after intra-band matching) and Level-2B browse image (after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started in Aug. 2008 and ended in Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 3#15 || 1500m || 10:54:47 || 11:10:55 || 123 || processed; complete || good |- | 2 || 3#13 || 1500m || 11:15:39 || 11:15:11 || 114 || processed; complete || good |- | 3 || 3#10 || 1500m || 13:55:47 || 14:11:27 || 116 || processed; complete || good || the resort, Yingke weather station maize field and Yingke wheat field |- | 4 || 3#9 || 1500m || 14:08:35 || 14:16:11 || 115 || processed; complete || good || the wetland park,Zhangye city,Yingke weather station maize field, Yingke wheat field, and Huazhaizi desert maize field |- | 5 || 3#7 || 1500m || 14:22:07 || 14:29:47 || 116 || processed; complete || good |- | 6 || 3#5 || 1500m || 14:34:15 || 14:41:43 || 113 || processed; complete || good || Huazhaizi desert plot 1 |- | 7 || 3#3 || 1500m || 14:47:11 || 14:54:47 || 115 || processed; complete || good || Huazhaizi desert plot 2 |- | 8 || 3#1 || 1500m || 14:57:51 || 15:13:03 || 109 || processed; complete || good |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, WANG Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
ASTER data in 2007 and 2008 are 15 scenes, covering the whole Heihe River Basin. Acquisition time: 2007-10-22 (1 scene), 2007-11-14 (1 scene), 2007-11-23 (1 scene), 2007-12-04 (1 scene), 2008-01-28 (1 scene), 2008-02-13 (1 scene), 2008-05-03 (4 scenes), 2008-05-05 (1 scene), 2008-05-17 (1 scene), 2008-06-04 (2 scenes), 2008-06-13 (1 scene). The product level is L1B, which has been calibrated by radiation and geometry. The ASTER Remote sensing data set of Heihe integrated remote sensing joint experiment was obtained from NASA's data website (https://wist.echo.nasa.gov/) through international cooperation.
National Aeronautics and Space Administration
The annual report (2008 and 2009) of the Zhangye water conservancy bureau included: (1) the water management staff statistics; (2) irrigation statistics; (3) projects status statistics; (4) project management statistics; (5) the technical and economic index of the irrigation area management; (6) water management tasks status statistics; (7) water management planning index. Those provide reliable information for water resources analysis in the middle stream.
Zhangye Water Conservancy Bureau,
The dataset of meteorological station observations (2008-2009) was obtained at the Yeniugou cold region hydrological station (E99°33'/N38°28', 3320m), Qilian county, Qinghai province. Observation items were multilayer (2m and 10m) of the air temperature and air humidity, the wind speed and direction, the air pressure, precipitation, the global radiation, the net radiation, the multilayer soil temperature (20cm, 40cm, 60cm, 80cm, 120cm and 160cm), soil moisture (20cm, 40cm, 60cm, 80cm, 120cm and 160cm), and soil heat flux. For more details, please refer to the attached Data Directions.
CHEN Rensheng, YANG Yong, Wang Weizhen, LI Xin
The dataset of GPS radiosonde observations was obtained at an interval of 2 seconds in the cold region hydrology experimental area in March, 2008 and the arid region hydrology experimental area from May to July, 2008. The items were the air temperature, relative humidity, air pressure, the dew temperature, the water vapor mixing ratio, latitudinal and longitudinal wind speeds, the wind speed and direction. Simultaneous with the satellite/airplane overpass, GPS radiosonde observations were carried out: Binggou watershed on Mar. 14, A'rou on Mar. 15, Binggou watershed on Mar. 15, Biandukou on Mar. 17, Binggou watershed on Mar. 22, Binggou watershed on Mar. 29, and A'rou on Apr. 1 for the upper stream experiments; Linze grassland station on May 30, Yingke oasis on Jun.1, Huazhaizi desert station on Jun. 4, Linze grassland station on Jun. 5, Linze grassland station on Jun. 6, Huazhaizi desert station on Jun. 16, Yingke oasis on Jun. 29, Binggou watershed on Jul. 5, Yingke oasis on Jul. 7, Linze grassland station on Jul. 11, and Yingke oasis at 0, 4:10, 8:09, and 12:09 on Jul. 14 for middle stream experiments.
GU Lianglei, HU Zeyong, LI Maoshan, MA Weiqiang, SUN Fanglei
This dataset contains Doppler Weather Radar data from the Zhangye National Climate Observatory during the Watershed Allied Telemetry Experimental Research from 2008-03-08 to 2008-06-30. The latitude and longitude of the observation point are 100°16.8'E, 39°05.094'N; the altitude is 1378m. The main observation items are: rainfall, cloud physics, weather radar, etc.
Zhangye National Climate Observatory
In 2007, 2008 and 2009, ENVISAT ASAR data 179 scenes, covering the whole Heihe River Basin. Among them, there were 63 in 2007, 71 in 2008 and 45 in 2009. Imaging mode and acquisition time are respectively: app can select polarization mode from August 15, 2007 to December 23, 2007, from January 02, 2008 to December 202009-02-15, 2008 to September 06, 2009; imp imaging mode from June 19, 2009 to July 12, 2009; WSM wide mode from January 1, 2007 to December 302008-01-01, 2007 to November 28, 2008, from March 13, 2009 to May 22, 2009. The product level is L1B, which is amplitude data without geometric correction. The ENVISAT ASAR remote sensing data set of Heihe comprehensive remote sensing joint experiment is mainly obtained through the China EU "dragon plan" project (Project No.: 5322 and 5344); the WSM wide model data in 2007 and January 2008 are obtained from Professor Bob Su of ITC; the 8-view app can be purchased from the earth observation and digital earth center of Chinese Academy of Sciences.
Institute of Remote Sensing and Digital earth, Chinese Academy of Sciences
This data set contains the meteorological data of 45 regional stations in Zhangye area of Gansu Province from 2008 to 2009. There are two factors (air temperature and rainfall): Dongdashan forest farm and Anyang in Ganzhou district; Horseshoe temple in Sunan County; Longqu in Zhangye; Junma farm in Shandan; Mawei Lake in Gaotai; Banqiao in Linze. The observation of the three elements (wind direction, air temperature and rainfall) are: the Imperial City, the big river and recreation in Sunan County. The observation of the four elements (wind direction, wind speed, air temperature and rainfall) are: Tiancheng, Baba, luotuocheng, Xinba and Nanhua in Gaotai County; Pingchuan, Xinhua, nijiaying and yinggezui in Linze County; Jing'an, hongshawo forest farm, pingpingpingbao, Daman, alkali beach and shigangdun in Ganzhou district; Gushanzi, Longshoushan forest farm, Laojun, Liqiao, dongle, Junma first farm in Shandan County Liudun and junmachang in Qilian Mountain; Liuba, Sanbao, zhaizhaizhaizi, shuangshusi, haichaoba and dadonggan in Minle County; Xishui in Sunan County. The observation of the five factors (relative humidity, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The observation of the five factors (air pressure, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The six elements of observation (air pressure, humidity, wind direction, wind speed, air temperature and rainfall) are as follows: East top of dacha, dacha and crescent platform in Sunan County. The data recording unit shall comply with the ground meteorological observation specifications, and the data storage shall be expressed as an integer, as follows: ten times record of temperature expansion; ten times record of precipitation expansion; ten times record of wind speed expansion. The data format is ASCII text file.
Gansu meteorological bureau, Zhangye city meteorological bureau
The dataset of airborne WiDAS mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jun. 1, 2008. Data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections). Level-1B browse image (after intra-band matching) and Level-2B browse image (intra-band after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started Aug. 2008 and ended Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The raw data set included 12 flight routs, some of which were repeated. There was discrepancy about 1.4s between exposure time of CCD images at 650nm/750nm and that of 550nm/700nm. Images in different bands has been matched during pre-processing. However, in areas with large elevation changes, intra-bands match error still existed. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 3#15 || 1500m || 13:35:46 || 13:39:37 || 59 || incomplete || incomplete |- | 2 || 3#13 || 1500m || 13:43:21 || 13:51:33 || 75 || incomplete || incomplete |- | 3 || 3#11 || 1500m || 13:54:41 || 14:03:17 || 41 || incomplete || incomplete || the resort, Yingke oasis maize field, and wheat field |- | 4 || 3#11a || 1500m || 14:07:23 || 14:14:46 || 111 || incomplete || incomplete || the resort, Yingke oasis maize field, and wheat field |- | 5 || 3#9 || 1500m || 14:18:21 || 14:26:17 || 119 || processed;complete || good || wetland park, Zhangye city, Yingke oasis maize field, and wheat field, Huazhaizi desert maize plot |- | 6 || 3#7 || 1500m || 14:31:01 || 14:38:25 || 112 || processed;complete || good |- | 7 || 3#5 || 1500m || 14:42:05 || 14:50:01 || 120 || incomplete || incomplete || Huazhaizi desert plot 1 |- | 8 || 3#3 || 1500m || 14:53:49 || 15:02:41 || 134 || processed;complete || good || Huazhaizi desert plot 2 |- | 9 || 3#1 || 1500m || 15:07:01 || 15:14:41 || 116 || processed;complete || good |- | 10 || 3#11b || 1500m || 15:20:05 || 15:26:37 || 99 || processed;complete || good || the resort, Yingke oasis maize field, and wheat field |- | 11 || 3#13a || 1500m || 15:30:45 || 15:39:01 || 125 || processed;complete || good |- | 12 || 3#5a || 1500m || 15:42:48 || 15:50:05 || 111 || processed;complete || good || Huazhaizi desert plot 1 |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, Wang Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
This dataset was acquired on May 25, 2008 by the L&K-band airborne microwave radiometer at the Linze-Biandukou flight area.The L-band frequency is 1.4 GHz, the rear view is 35 degrees, and the dual-polarization (H and V) information is obtained; the K-band frequency is 18.7 GHz, with zenith angle observation, and there is no polarization information. The plane took off from Zhangye Airport at 9:51 (Beijing time, the same below) and landed at 15:01. The observation from 10:10 to 12:30 was in the Linze area, the flight altitude is about 1800m, and the flight speed is about 250km/hr. The plane flew low over Linze Reservoir from 12:31 to 12:38. The plane works in the Bianduko aerophotography region from13:13 to 14:35, the flight altitude is about 3000m, and the flight speed is about 250km/hr. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are all from non-imaging observation, the digital values obtained from instantaneous observation are recorded by text files, the longitude and latitude of flight and the attitude parameters of aircraft are recorded by GPS data. At the same time, through the respective clock records of the microwave radiometer and GPS, the microwave observation can be linked with the GPS record, and the microwave observation can be matched with the geographical coordinate information. Due to the relatively low resolution of the microwave radiometer, the leeway, welter and pitching of the aircraft are generally neglected in data processing. According to the target of use and relative flight altitude (H), after calibration and coordinate matching, the observation information can be rasterized. The resolution (x) of the L and K bands can be considered consistent with the observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24H. After the above steps, products that can be directly used by users can be obtained.
WANG Shuguo, WANG Xufeng, CHE Tao, XIAO Qing, Liu Qiang, ZHAO Kai, JIN Jinan
This is the MODIS data with 499 scenes covering the whole Heihe River basin in 2008 and 2009. The acquisition time is from 2008-04-23 to 2008-09-30 (295 scenes), and from 2009-05-01 to 2009-10-01 (204 scenes). MODIS data products have 36 channels with resolutions of 250m, 500m and 1000m respectively. The data format is pds, unprocessed, and the MODIS processing software is filed together with the original data. MODIS remote sensing data of Heihe Integrated Remote Sensing Joint Test are provided by Gansu Meteorological Bureau.
Gansu meteorological bureau
The dataset of airborne WiDAS mission was obtained in the Linze station-Linze grassland flight zone on Jul. 11, 2008. Intra-band data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections), Level-1B browse image (after intra-band matching) and Level-2B browse image (after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started in Aug. 2008 and ended in Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 1#13 || 1500m || 1:52:06 || 11:58:02 || 90 || processed; compelete || good || Pingchuan reservoir |- | 2 || 1#11 || 1500m || 12:11:38 || 12:09:54 || 95 || processed; compelete || good || Linze grassland station |- | 3 || 1#9 || 1500m || 12:14:58 || 12:20:42 || 87 || processed; compelete || good || Pingchuan reservoir |- | 4 || 1#7 || 1500m || 12:27:14 || 12:33:18 || 92 || processed; compelete || good || desert transit zone |- | 5 || 1#5 || 1500m || 12:38:22 || 12:44:14 || 89 || processed; compelete || good || north-south desert plot |- | 6 || 1#3 || 1500m || 12:50:30 || 12:56:26 || 90 || processed; compelete || good || Pingchuan reservoir |- | 7 || 1#1 || 1500m || 13:01:46 || 13:07:46 || 91 || processed; compelete || good || Linze station |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, Wang Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
The super sample plot is composed of 16 sub samples. In order to locate each tree in the sample plot and facilitate the location of the base station point for ground-based radar observation, it is necessary to measure the geodetic coordinates of the sub sample plot corner point and the preset base station point for ground-based radar. The location of these points and each tree is measured by total station. Because the total station measures relative coordinates, in order to obtain geodetic coordinates, it is necessary to use differential GPS (DGPS) to measure at least one reference point around the super sample plot with high precision. In addition, we also use DGPS to observe the geodetic coordinates of all corner points of the subsample, and the measurement results can form the verification of the total station measurement results. The data set is based on all the positioning results measured by DGPS, excluding the positioning results of total station. The measurement time is from June 1 to 13, 2008, using the French Thales differential GPS measurement system, model z-max. The observation method is to use two GPS receivers for synchronous static measurement, one is the base station, which is set next to Gansu Water Conservation Forest Research Institute (the WGS geodetic coordinate of the base station is a first-class benchmark introduced from Zhangye City through multi station observation using z-max). The other is the mobile station, which is placed on the observation point of super sample plot. The observation time of each point varies from 10, 15, 20, 25, 30 minutes. The specific time depends on the satellite signal. The signal difference time is measured for several minutes more. Finally, the final positioning result is obtained by using the processing software of the instrument. WGS geodetic coordinate system is used for the positioning results. Firstly, six temporary control points were measured in the open area next to the super sample plot, providing reference points for the total station to measure the position of trees in the super sample plot. Then, flow stations were set up on each corner of 16 sub plots of super plot, and the coordinates of corner points were measured, and 41 observation points were obtained. The dataset stores the positioning results of these 47 points. This data is only for project use and not for external sharing.
LIU Qingwang, BAI Lina, CHEN Erxue
The dataset of airborne microwave radiometers (K&Ka) mission was obtained in the Binggou watershed flight zone on Mar. 30, 2008. The frequency of K bands was 18.7 GHz at the nadir view angle without polarization; and the frequency of Ka band was 36.0 GHz with the scanning angle range ±12°. The plane took off at Zhangye airport at 12:43 (BJT) and landed at 15:44, along the scheduled 11 lines at the altitude about 5000m and speed about 220-250km/hr. The raw data include microwave radiometer (L&K) data and GPS data; K band was instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together) and Ka band was recorded hex text, and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. K band resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height); for Ka the resolution was 39m.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, Liu Qiang
The dataset of airborne WiDAS mission was obtained in the Zhangye-Yingke-Huazhaizi flight zone on Jul. 11, 2008. Intra-band data available for general users include Level-2C data (after geometric, radiometric and atmospheric corrections), Level-1B browse image (after intra-band matching) and Level-2B browse image (after registration). The raw data, Level-1A, and data processing parameters were filed; applications would be evaluated prior to access. Data processing started in Aug. 2008 and ended in Apr. 2009, and in Nov. 2009, CCD data were reprocessed to adjust radiometric calibration. The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 3#6 || 3196.6m || 13:23:54 || 13:31:18 || 112 || processed;complete || good || Huazhaizi desert plot 1 |- | 2 || 3#10_1 || 3167.6m || 13:36:06 || 13:44:34 || 128 || processed;complete || good || Zhangye city, the wetland park, Yingke weather station maize field, Yingke wheat field, and Huazhaizi desert maize plot |- | 3 || 3#10_2 || 1607.2m || 13:52:14 || 13:59:34 || 111 || processed;complete || good || Zhangye city, the wetland park, Yingke weather station maize field, Yingke wheat field, and Huazhaizi desert maize plot |- | 4 || 3#10_3 || 823.3m || 14:13:46 || 14:14:34 || 133 || processed;complete || good || Zhangye city, the wetland park, Yingke weather station maize field, Yingke wheat field, and Huazhaizi desert maize plot |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, Wang Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
This data set was acquired by the L & K band airborne microwave radiometer on the morning of April 1, 2008, in the A'rou flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 8:06 (Beijing time, the same below) and landed at 11:17. 8: 50-10:13 fly from north to south, observe and reserve 10 routes, flight height is about 4100m, flight speed is about 260km / hr. 10: At 20-10:35, Jiafei 6-8 and 6-9 lines completed the observation. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, Liu Qiang
This data set was acquired by L & K band airborne microwave radiometer on July 4, 2008, in the Biandukou-Linze flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 9:48 (Beijing time, the same below) and landed at 14:14. 10: At 16-11:40, the flight altitude was 3100-3500m and the flight speed was about 230-250km / hr. 12: 16-12:18 low flying Linze reservoir line 1-6, relative altitude 100m, flight speed 190km / hr. 12: At 26-13:42, he worked in Linze photography area, with a flight altitude of about 2000m and a flight speed of about 250km / hr. 13: 49-13:51 fly low again to Linze reservoir line 1-6. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.
LI Xin, WANG Shuguo, CHE Tao, XIAO Qing, Liu Qiang, ZHAO Kai, JIN Jinan
The dataset of airborne microwave radiometers (L&K) mission was obtained in the Biandukou flight zone on Mar. 21, 2008. The frequency of L bands was 1.4 GHz with back sight of 35 degree and dual polarization (H&V) was acquired; and the frequency of K band was 18.7 GHz at the nadir view angle without polarization. The plane took off at Zhangye airport at 8:00 (BJT) and landed at 11:40, from north to south along the scheduled lines at the altitude about 4100m (400m for the low flight) and speed about 290km/hr . The raw data include microwave radiometer (L&K) data and GPS data; the former were instantaneous non-imaging observation recorded in text, which could be converted into brightness temperatures according to the calibration coefficients (filed with raw data together), and the latter were aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. L&K bands resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height) for L and x=0.24H for K.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, Liu Qiang, XIAO Qing
The dataset of airborne microwave radiometers (L&K) mission was obtained in the A'rou-Biandukou flight zone on Mar. 19, 2008. The frequency of L bands was 1.4 GHz with back sight of 35 degree and dual polarization (H&V) was acquired; and the frequency of K band was 18.7 GHz at the nadir view angle without polarization. The plane took off at Zhangye airport at 9:25 (BJT) and landed at 12:50 along the scheduled lines at the altitude about 4100m and speed about 260km/hr. The raw data include microwave radiometer (L&K bands) data and GPS data; the former are instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together), and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. L&K bands resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height) for L band and x=0.24H for K band.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, Liu Qiang
This data set was acquired by K & Ka band airborne microwave radiometer on March 29, 2008, in the Binggou watershed flight zone. Among them, K-band frequency is 18.7ghz, zenith angle observation, no polarization information; Ka band frequency is 36.0ghz, scanning imaging, scanning range ± 12 °, vertical polarization observation. The plane took off from Zhangye airport at 8:49 (Beijing time, the same below) and landed at 12:54. 9: At 25-12:08, 18 routes were flown according to the scheduled design, with a flight altitude of about 5000m and a flight speed of about 220-250km / hr. The original data is divided into two parts: microwave radiometer data and GPS data. The K-band of microwave radiometer belongs to non imaging observation, and the digital value obtained from instantaneous observation is recorded in the text file. Ka band belongs to imaging observation, which is different from L band and K band data. The original record of Ka band is hexadecimal text file. In data processing, the hexadecimal file needs to be converted to decimal system first, and then 112 data (the angle difference of each two data points is 24 / 112 = 0.214 degrees) are collected uniformly within the scanning range of 24 degrees. GPS data record the latitude and longitude of the flight and the aircraft attitude parameters. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, microwave observation and GPS record can be linked to match the geographical coordinate information for microwave observation. When processing Ka band data, the angle scanning effect should also be considered, and 112 data in the scanning period should be given geographical coordinate information respectively. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of K-band is consistent with that of observation footprint. The reference resolution is: x = 0.24h; the resolution of Ka band is 39m. After the above steps, we can get the products that users can use directly.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, Liu Qiang
This dataset includes: remote sensing data _ETM around 2000 in Western China; Data attributes: Pixel Size: 15-meter panchromatic: Band 8 30-meter: Bands 1-5 and Band 7 60-meter: Bands 6H and 6L Resampling Method: Cubic Convolution (CC) Map Projection: UTM – WGS 84 Polar Stereographic for the continent of Antarctica. Image Orientation: Map (North Up) The data was downloaded from USGS: http://glovis.usgs.gov/ImgViewer/Java2ImgViewer.html?lat=38.3&lon=78.9&mission=LANDSAT&sensor=ETM. Part of the remote sensing images collected from various research projects. The folder contains ETM 8 band images (* .tif) and header files (* .met). The naming format of image files is row and column number _ETM image logo (7k, 7x, 7t), image acquisition time _ image 6 degree band number _ band number. The data also includes an image index map in shp format.
EROS DATA CENTER
The research project on the function and mechanism of sand-fixing afforestation of waste lignin from straw pulp and paper making belongs to the national natural science foundation of China "environment and ecological science in western China" major research program, led by wang hanjie, a researcher of the institute of aviation meteorology and chemical protection, air force equipment research institute. The project ran from January 2004 to December 2006 Remittance data of the project: 1. 2005-08-10 - sand lake - jinsha wan test site image (JPG) 2.2006 field picture of fixed sand test (JPG) 3. Meteorological data of ningxia jinshawan meteorological station (TXT text) Observation data including dry bulb temperature, wet bulb temperature, 0, 5, 10, 15, 20cm ground temperature, evaporation and air temperature were observed at 8:00,14:00 and 20:00 on August 13, 2005 4. Growth data of jinshawan community in ningxia (TXT text) The data of crown diameter and height of four samples are included. 5. Soil water data of jinshawan, ningxia (excel) Soil moisture data of 16 samples at depths of 20CM and 12CM in clear water control area and lignin spraying area by 2 hours in the daytime on August 19, 2005. 6. Soil water data of shahu lake in ningxia (excel) On August 10,11, 2005, soil moisture data of various depths of 10CM,12CM and 20CM were obtained 7. Plant growth data of sand fixation community in shahu, ningxia (excel) Plant growth statistics of 5 sample plots: species name,x,y, base, crown, height, number of plants.
WANG Hanjie
The project of ecological security evaluation and landscape planning in the inner flow area of hexi corridor belongs to the major research plan of "environment and ecological science in western China" of the national natural science foundation, led by researcher xiao duning of the institute of cold and dry environment and engineering, Chinese academy of sciences. The project runs from Jan. 2002 to Dec. 2004. The data of the project is the ecological data of the inner flow area of hexi corridor, including heihe basin, shiyang river basin, shule river basin and river runoff. Investigation and analysis data of ejin banner in heihe river area 1. Soil moisture TDR data The data is stored in Excel format and includes both tubular and well 2002 soil moisture survey data. Tube TDR data Tubular soil moisture survey data with 1.8m underground intervals of 0.2 m on June 1, June 11, June 21, July 1, July 11, July 21, July 31, August 11 and August 21, 2002, including erdaqiao, gobi, forest farm, qidaqiao and tseng forest. Well TDR data Data of well soil moisture survey on June 21, July 1, July 11, July 21, July 31, August 11 and August 21, 2002, which included willows, gobi, populus euphratica and weeds, with intervals of more than 5 meters and 0.2 meters underground. Groundwater GPS data In Excel format, the TDR observation points were measured by GPS, including basic information such as longitude, latitude and elevation, plus information such as water level, logging type and remarks. 2. Soil nutrient salinity data To Excel format, 42 samples containing "total oxygen N %", "total phosphorus P %", "% organic matter", "hydrolysis N N mg/kg", "organic P P mg/kg", "available K K mg/kg", "% calcium carbonate", "PH", "the % of salt" and "total potassium % K" nutrient investigation and analysis of data, such as 42 samples containing "conductance value (%) computing the salt", CO3, HCO3, CI, SO4, Ca, mg, Na + K salt investigation and analysis of data, etc. 3. Soil mechanical composition In Excel format, 42 sample points contained soil particle composition information analysis tables of depth (cm), percentage of particle content at each level (sieve analysis method) (>2mm, 2-1mm, 1-0.5mm, 0.5-0.25mm and 0.25-0.1mm) and percentage of particle content at each level (straw method) (<0.1mm, 0.1-0.05mm, 0.05-0.02mm, 0.02-0.002mm and <0.002mm). 4. Meteorological data of erqi station Is the Excel sheet, including rainfall data from 1957 to 1998, evaporation data from 1957 to 1998, temperature data from 1957 to 1991, wind speed data from 1972 to 1992, maximum temperature data from 1972 to 1992, minimum temperature data from 1972 to 1992, sunshine data from 1972 to 1992 and relative humidity data from 1972 to 1992. Scan copy of jiuquan area The scanning copy of the general map of land use status in jiuquan 1:300,000, the scanning copy of the evaluation map of the distribution of cultivated land reserve resources in jiuquan 1:300,000 and the scanning copy of the district map of jiuquan 1:300,000 Zhang ye water protection information It contains the statistics of water and soil conservation in the regions of ganzhou district, gaotai district, linze county, minle county, shandan county, sunan county and zhangye city in zhangye region (stored in Excel format) and the planning report of each region (stored in Word format). Shiyang river basin Jinchang water resources survey data It includes the scan of 1:50000 water resource distribution map of jinchang city in 1997, the average decline degree of groundwater level in qinghe and jinchuan irrigation areas in jinchang city from 81 to 2000, the statistical table of annual groundwater supply in 1986, 1995 and 2001, and the survey and evaluation report of cultivated land reserve resources in jinchang city. Survey data of water resources in minqin Includes detailed minqin county area typical Wells status per acre crops irrigation water use questionnaire, irrigation, industrial and agricultural water use questionnaire, seeded area of villages and towns questionnaire, the survey data of groundwater hardness index, minqin county of surface runoff and the runoff change situation report, irrigation water quota formulation of evaluation report, minqin county water resources development and utilization of report and opinion polls irrigation works report, etc. Zoning map of soil improvement and utilization in wuwei area For the scanning part of water and soil conservation planning map of wuwei city, the scanning part of the location map of wuwei irrigation area, the scanning part of the scanning part of the administrative map of wuwei city, the scanning part of the water source and water conservancy project construction map of wuwei city, the scanning part of the planning map of wuwei sanbei phase ii shelterbelt project and the scanning part of the administrative map of liangzhou district. Yongchang county water protection information It is the scanning copy of the soil and water conservation supervision, prevention and control plan of 1994 in yongchang county at 1:20000. Shule river basin Distribution map of water resources development and utilization in yumen city It consists of four jpeg images, a 1:250,000 general scanning map of yumen's water resources development and utilization in 2002, and three high-resolution sub-maps. River runoff This data set is stored in Excel format, mainly including the total flow of three basins from 1949 to 2002, the annual runoff of each tributary of the basin, the annual runoff of detailed investigation areas such as jiuquan and the upstream inflow of yuanyang pond reservoir. Total basin Is the annual runoff data of heihe river basin, shiyang river basin and shule river basin from 1949 to 2002. Annual runoff of black river Is the annual runoff data of heihe river, liyuan river, taolai river, hongshui river, qingshui river, fengle river and hongsha river from 1949 to 2002. Annual runoff of shiyang river Is the annual runoff data of xidahe river, dongdahe river, xiying river, jinta river, zama river, huangyang river, gulang river, dajing river and other tributaries from 1949 to 2002. Annual runoff of shule river Is the annual runoff data of dang river, shule river and harten river from 1950 to 2002. Annual river runoff in jiuquan area For the annual flow data of changma gorge of shule river, dangcheng bay of danghe river, junmiao of shule river, baiyang river, icegou of toulai river, yuanyang pond of toulai river, xindi of hongshui river, fengle river, hongsha river of maying river and suang river of yulin river in jiuquan region from 1950 to 2002. Statistics of upstream inflow of yuanyang pond reservoir The data are the upstream inflow data of yuanyang pond reservoir from 1959 to 2001.
Xiao Duning
The hydrological ecological process at the loess basin scale and its response to global climate change is a project of the Major Research plan of the National Natural Science Foundation of China - Environmental and Ecological Science in Western China. The project is led by liu wenzhao, a researcher from the institute of water and soil conservation, ministry of water resources, Chinese academy of sciences. The project runs from January 2003 to December 2005. The project submitted data: The CLIGEN parameter and output dataset of the Loess Plateau: It was generated during the evaluation and improvement of the practicality of the weather generator CLIGEN in the Loess Plateau. The dataset includes parameter data files for driving CLIGEN and 100-year daily weather data files generated by running CLIGEN from 71 meteorological stations on the Loess Plateau. The 71 sites are distributed in 7 provinces (Shanxi, Shanxi, Gansu, Inner Mongolia, Ningxia, Henan, and Qinghai). Each file is individually saved in ASCII format and can be opened for viewing with text programs. This data set is generated based on long-term serial daily meteorological data measured by 71 meteorological stations on the Loess Plateau. Daily meteorological parameters include: precipitation, maximum, minimum, and average temperature, solar radiation, relative humidity, wind speed and direction. The data comes from the China Meteorological Science Data Sharing Service Network and the Loess Plateau Soil and Water Conservation Database. Among them, solar radiation data is available at only 12 sites on the Loess Plateau. The solar radiation parameters at other sites are generated by kriging space interpolation. The dew point temperature is calculated using the average temperature and relative humidity.
LIU Wenzhao
The interaction mechanism project between major road projects and the environment in western mountainous areas belongs to the major research plan of "Environment and Ecological Science in Western China" of the National Natural Science Foundation. The person in charge is Cui Peng researcher of Chengdu Mountain Disaster and Environment Research Institute, Ministry of Water Resources, Chinese Academy of Sciences. The project runs from January 2003 to December 2005. Data collected for this project: Engineering and Environmental Centrifugal Model Test Data (word Document): Consists of six groups of centrifugal model test data, namely: Test 1. Centrifugal Model Test of Soil Cutting High Slope (6 Groups) Test 2. Centrifugal Model Experiment of Backpressure for Slope Cutting and Filling (4 Groups) Test 3. Centrifugal Model Experimental Study on Anti-slide Piles and Pile-slab Walls (10 Groups) Test 4. Centrifugal Model Tests for Different Construction Timing of Slope (5 Groups) Test 5. Migration Effect Centrifugal Model Test (11 Groups) Test 6. Centrifugal Model Test of Water Effect on Temporary Slope (8 Groups) The purpose, theoretical basis, test design, test results and other information of each test are introduced in detail.
CUI Peng
The project of material and energy exchange and community stability of soil-plant gas interface in oasis-gobi transition zone belongs to the major research program of "environmental and ecological science in western China" sponsored by the national natural science foundation, and is headed by professor Wang genxuan of Lanzhou university. the running time of the project is from January 2002 to December 2004. Data collected for this project: 1. Status of energy utilization rate of desert natural vegetation The data is in Excel format. The individual size of plants and biomass of green photosynthetic tissue measured by randomly selecting some plants from the desert natural vegetation sample are mainly used to explore the energy utilization rate model of desert plants in this project, including variables such as average total biomass, average biomass of photosynthetic tissue and population density. 2. Survey data on basic information of natural vegetation community institutions in sample plots The data is in Excel format, including survey and analysis data of vegetation density and average underground biomass in Lanzhou, Baiyin and Jingtai.
WANG Genxuan
Data of the project: 1. Sample DOC information sheet: liangfeng cave, qixing cave, general cave, rhinoceros cave 2003-2004 water sample DOC data. Excel sheet 2. Excel sheet of hydrogen and oxygen isotope information of samples: secondary chemical sediments, water/vSMOW, rain 18OvSMOW and so on in liangfeng cave, seven-star cave, general cave, rhino cave 3. The sample water chemical information table of Excel table: header is as follows: sample number # T ℃ pH K + Na + (mg/l) (mg/l) Ca2 + (mg/l) magnesium 2 + (mg/l) Cl - (mg/l) SO42 - (mg/l) HCO3 - (mg/l) SIC SID SIG PPCO2 (ATM) PCO2 (Pa) error 4. Sample carbon isotope information sheet In addition, the project is accompanied by basic information and data information documents.
WANG Shijie
The research project on the breeding strategies of desert plants in hexi region of gansu province belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by professor an lizhe of lanzhou university. The project runs from January 2004 to December 2007. Remittance data of the project: 1. Effect of super - dry preservation on seeds The data is in Word format and contains a lot of analysis charts. A comparative study was conducted on the changes of vitality of overlord seeds and rhizoma coptidis seeds stored at 45℃, room temperature and 15℃ respectively, and the effects of dampening treatment, artificial aging and ultra-dry treatment on electrical conductivity and physiological activity indexes of seeds were conducted.The details are as follows: Energy change of seeds was preserved at 45℃ FIG. 1 germination rate (%) of overlord seeds stored at 45℃、FIG. 2 germination index of overlord seeds stored at 45℃、FIG. 3 vigor index of the seeds stored at 45℃. Change of seed vigor at room temperature FIG. 4 germination rate (%) of overlord seeds stored at room temperature、FIG. 5 germination index of overlord seeds stored at room temperature、FIG. 6 vigor index of overlord seeds preserved at room temperature. 15℃ preservation of seed vitality changes FIG. 7 germination rate of overlord seeds stored at 15℃ (%)、FIG. 8 germination index of alba seeds stored at 15℃、FIG. 9 vigor index of the seeds stored at 15℃. Changes of seed vigor of rhizoma coryzae at 45℃ FIG. 10 germination rate (%) of rhizoma coptidis seeds stored at 45℃、FIG. 11 germination index of the seeds of rhizoma coryzae at 45℃、FIG. 12 vigor index of seeds of corydalis corydalis preserved at 45℃. Changes of seed vigor of rhizoma coryzae at room temperature FIG. 13 germination rate (%) of rhizoma corydalis seeds preserved at room temperature、FIG. 14 germination index of seeds preserved at room temperature、FIG. 15 vigor index of seeds of corydalis corydalis preserved at room temperature Changes of seed vigor of rhizoma corydalis in 15℃ storage FIG. 16 germination rate (%) of rhizoma coptidis seeds stored at 15℃、FIG. 17 germination index of the seeds of rhizoma coptidis preserved at 15℃、FIG. 18 vigor index of seeds of corydalis sativus preserved at 15℃ Effect of slow wetting treatment on relative conductivity of seeds FIG. 28 changes in the relative conductivity of arrobatus seeds without dampening treatment、FIG. 29 changes of relative conductivity of overlord seeds after slow wetting treatment、FIG. 31 changes of relative electrical conductivity of seeds of rhizoma coryzae after dampening treatment Effects of artificial aging treatment on seed of archaea chinensis l FIG. 34 effects of artificial aging treatment on germination rate of overlord seeds、FIG. 35 effect of artificial aging treatment on seed vigor index、FIG. 36 effects of artificial aging treatment on the relative conductivity of overlord seeds Effects of artificial aging treatment on seeds of coryza sativa l FIG. 37 effect of artificial aging treatment on germination rate of seeds of coryza sativa l、FIG. 38 effect of artificial aging treatment on seed vigor index of rhizoma coryzae、FIG. 39 effects of artificial aging treatment on the relative electrical conductivity of the seeds of coryza sativa l Effects of artificial aging on the content of aldehydes in seeds after 15 days FIG. 52 effects of artificial aging treatment on the content of aldehydes in the seeds after 15 day、FIG. 53 effects of artificial aging treatment on the content of aldehydes in seeds of prunus chinense after 15 days, Effect of super - dry treatment on physiological activity index of seed Table 31 effect of super - dry treatment on physiological activity index of monkshood seed Table 32 influence of hyperdrying treatment on physiological activity index of seeds of coryza sativa l 2. Micromorphological and structural characteristics of the skin of desert plants (including experimental conditions, microscopic images of the skin microstructure and analysis of distribution of 47 plants, genus, species code, list of length and weight of long and short axes of seeds, and list of seed elements)
AN lizhe
The Shiyang River Basin Information System thematic data set is one of the results of the technical assistance project “Optimization of Desertification Control in Gansu Province” assisted by the Asian Development Bank, including 5 folders including document, investigation_point, maps, photo, and spatial. Each file The folder contains several files. The document folder includes the target design, data processing, thematic summary report, and projection information.The gpspoint folder includes files recorded in shapefile point format sampled by gps according to different purposes.The maps folder contains Chinese, english, and fonts files. Folder, the first two folders represent 14 Chinese and English maps stored in A4 format and pdf format, and fonts contain some special fonts: the photo folder contains field survey digital photos stored in bmp format: spatial The folder contains the dem folder of the digital elevation model, the gansu folder of the outline map of Gansu Province and the Hexi Corridor, the generate folder of the site data file shapefile, the grid folder of the raster data of various geographic features, and the remote sensing image. image folder, meteoHydro folder for original site text data, and vector folder for vector data for various geographic features. The data includes: 1. DEM folder: 100m dem, hillshade, divided into GRID and geotif formats 2. Gansu folder: Gansu border, Hexi border 3. Grid folder: NDVI (vegetation index), lndchange (land transfer matrix), landscape86 (land landscape map in 86 years), landscape2k (land landscape map in 2000), Desertiftype (desert type landscape map), Desersevrt (desert type map ), Annprecip 4. Meteohydro folder: Minqin, Wuwei, Yongchang meteorological data (1) daily daily observation items: Airpress (humidity), Precipitation (radiation), Sunlight (sunlight), Temperature (temperature) ), Wind (wind speed) (2) Months (monthly): Airpress (air pressure), Humidity (humidity), Rain (precipitation), Sunlight (sunlight), Temperature (temperature), Wind (wind speed) (3) tendays: Airpress, Humidity, Rain, Sunlight, Temperature, Wind (4) years (year by year): Precipitation, Temperature 5. Vectro folder: (1) Admwhole (county boundary map), (2) Lake (lake), (3) Hydrasta (hydrological site), (4) Basin (watershed boundary), (5) Landscape2000 (land use 200 (Year), (6) landscape86 (land use 1986), (7) Meteosta (meteorological station), (8) Lakep (reservoir point), (9) Place (residential point), (10) Rainfallcontour (railway), ( 11) Rainfallcontour (rainfall contour map), (12) Road (highway), (13) Stream (water system map), (14) Town (county name), (15) Township (county township boundary), (16) Vegetation (vegetation map) Data projection information: PROJCS ["Albers", GEOGCS ["GCS_Krasovsky_1940", DATUM ["Not_specified_based_on_Krassowsky_1940_ellipsoid", SPHEROID ["Krasovsky_1940", 6378245.0,298.3]], PRIMEM ["Greenwich", 0.0], UNIT ["Degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["False_Easting", 0.0], PARAMETER ["False_Northing", 0.0], PARAMETER ["longitude_of_center", 105.0], PARAMETER ["Standard_Parallel_1", 25.0], PARAMETER ["Standard_Parallel_2", 47.0], PARAMETER ["latitude_of_center", 0.0], UNIT ["Meter", 1.0]] For detailed data description, please refer to the data file
LI Xin
This data is digitized from the `` Map of Desertification Types of Naiman Banner, Kulun Banner, and Horqin Left-wing Rear Banner '' on the drawing.The specific information of this map is as follows: * Chief Editor: Zhu Zhenda * Deputy editors: Liu Shu and Qiu Xingmin * Edit: Feng Yukun * Mapping: Feng Yudi, Zhao Yanhua, Wang Jianhua * Double photo: Li Weimin * Field trip: Zhu Zhenda, Qiu Xingmin, Liu Shu, Shen Jingqi, Feng Yudi, Wang Yimou, Yang Youlin, Yang Taiyun, Wen Zixiang, Liu Yangxuan * Mapping unit: Prepared by Desert Research Office, Chinese Academy of Sciences * Publisher: No * Scale: 1: 300000 * Publication time: No * Legend: undulating undulating sandy loess plain, non-desertified land, grassland, saline-alkali land, woods and shrubs, arable land, mountains, sand dunes File format and naming The data is stored in ESRI Shapefile format, including the following layers: Naiman Banner, Kubian Banner, Kezuohou Banner Desertification Type Map, River, Road, Lake, Railway, Well Spring, Residential Area Data attributes Desertification Grade Vegetation Background Desertified land under development Saline-alkali land Heavily desertified land Woods and shrubs Mountain Strongly developed desertified land Potentially desertified land Lake Non-desertified land Undulating sandy loess plain 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Jianhua, ZHU Zhenda
This data is digitized from the "Tianshui Land Use Status Map" of the drawing. This map is a key scientific and technological research project of the "Seventh Five-Year Plan" of the country: "Three North" Shelterbelt Remote Sensing Comprehensive Survey, one of the series maps of Ganqingning Type Area. The information is as follows: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Manuscript: Mou Xin-shi, Cui Sai-hua, Wang Xian. He Shouhua * Compiling: He Shouhua, Wang Xian, Quan Zhijie, Cui Saihua, Long Yaping, Mu Xinshi, He Shouhua, Mao Xiaoli, Cui Saihua, Wang Changhan * Editors: Feng Yushun and Wang Yimou * Qing Hua: Feng Yushun, Zhang Jingqiu, Yang Ping * Cartography: Feng Yushun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Tianshui landuse map (landuse), River, Road, point-like residential land and area-like residential land 3. Data Fields and Attributes Type number land resource class Land_type 88 Exposedrock 86 bare soil Bareground 85 sandy beach and dry ditch Sandy flat and dryvally 446 Artemisia ordosica, miscellaneous grass G1. Artemisia subdingata mixed herbs 445 fern, miscellaneous grass G1. pterideumaquilumvar. latiusculummixedherbs444 Polygonum viviparum, grass G1. G1.Polygonumriciparum,grasses 443 Huang Qiangwei, Spiraea shrub miscellaneous grass G1. Rosa Hugo NIS, Spiraea Canes Cens Scrub Mixed Weeds 442 honeysuckle, elaeagnus pungens shrub miscellaneous grass g1.lonicera japonica eluegas pungens shurb mixed herbs 441 Tiger Hazelnut, Shrub Miscellaneous Grass G1. Ostryopsis Daridiana Scrub Mixed Herbs ............. Please refer to the data document for details. 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Jianhua, WANG Yimou, YOU Xianxiang, SHEN Yuancun, FENG Yusun, WANG Xian, YAO Fafen
The data is digitized from a drawing, the map of developmental degree of desertification in Daqinggou, Keerqin (HORQIN) Steppe (1981). The specific information of this map is as follows: * Chief Editor: Zhu Zhenda * Editor: Feng Yusun * Drawer: Feng Yusun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Mapping unit: Prepared by Desert Research Office, Chinese Academy of Sciences * Publisher: No * Scale: 1: 50000 * Publication time: No * Legend: Gully Dense Forest, Sparse Woods, Brush, Artificial Woodland, Nursery and Vegetable Garden, Grass Land, Dry Farmland (Dry Farmland), Rejected Farmland, Marsh Land, Shifting Snad-Dunes, Semi-Shifting Sand-Dunes, Semi-Fixed Sand-Dunes ), Fixed Sand-Dunes, Water Area, Rice, Residential, Highway 1. File format and naming The data is stored in ESRI Shapefile format, including the following layers: Desertification map of Daqinggou area in Horqin steppe, rivers, swamps, roads, lakes, residential areas 2. Data desertification attribute fields: Type of desertification (Shape), Grassland (Grassland), Woodland (Woodland), Woodland Density (W_density), Farmland (Farmland) 3. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Jianhua, ZHU Zhenda, YAO Fafen, FENG Yusun
This data is the dunhuang land use status map digitized from the drawings. This map is one of the key scientific and technological research projects of the seventh five-year plan of China: comprehensive remote sensing survey of shelterbelt in the third north, and one of the series maps of the type area of gan qingning. The information is as follows: * chief editor: wang yimou, * deputy chief editor: feng yusun, you xianxiang, shenyuan village *, qing painting: wang jianhua, yao fafen, Yang ping * drawing: feng yu-sun, yao fa-fen, wang jianhua, zhao yanhua, li weimin * cartographic unit: desert laboratory, Chinese academy of sciences * publishing house: xi 'an map publishing house 2. File format and naming The data is stored in ESRI Shapefile format, including the following layers: Dunhuang land use status map, rivers, roads, lakes, railways, residential land, reservoirs, desertification 3. Data fields and properties Type code land resource class (Land_type) 12. Irrigated field 31 Woodland 311 Woodland 312 Joe irrigation mixed forest land (tree-shurb mixed) 321 Shrub land (Shrub) Sparse shrub 33 Sparse woods In winter and spring of 4111 Meadow grassland, Meadow grassland in the spring and winter) 4112 winter and spring of salinization meadow grassland, Saline meadow grassland in the spring and winter) 4112 winter and spring of salinization meadow grassland, Saline meadow grassland in the spring and winter) In winter and spring of 4113 salt meadow grassland (Salty soil meadow grassland in the spring and winter) 4122 gritty desert grassland autumn grass (Gravely desert - steppe grassland in autumn and winter) 4124 mountain desert grassland winter and spring pastures (Mountainous desert - steppe grassland in winter and spring) 4134 four seasons mountain desert grassland, Mountainous desert steppe in four seasons) Sandy desert steppe in autumn and winter Gravely desert steppe in autumn and winter Earthy desert steppe in four seasons Alpine steppe in four seasons 51 Urban and town land 52 Village land 73 Reservoir and pond 74 Reed marshes Tidal flat 81 Desert land 82 Saline-alkali land 83 Marshes 84 Sandy land Sandy flat and dry valley 86 Bare land 87 Gobi Gobi 88 Exposed rock Flat sandy land Compound dunes Undulatory sand-overlying land Dunes and barchan chain The sand ridge (Longitudinal dune) Check dune
WANG Jianhua, WANG Yimou, FENG Yusun, YAO Fafen, YOU Xianxiang, SHEN Yuancun, FENG Yusun, WANG Xian, YAO Fafen, SHEN Yuancun
The data is digitized from a drawing, the map of developmental degree of desertification in Daqinggou, Keerqin (HORQIN) Steppe (1975). The specific information of this map is as follows: * Chief Editor: Zhu Zhenda * Editor: Feng Yusun * Drawer: Feng Yusun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Mapping unit: Prepared by Desert Research Office, Chinese Academy of Sciences * Publisher: No * Scale: 1: 50000 * Publication time: No * Legend: Gully Dense Forest, Sparse Woods, Brush, Artificial Woodland, Nursery and Vegetable Garden, Grass Land, Dry Farmland (Dry Farmland), Rejected Farmland, Marsh Land, Shifting Snad-Dunes, Semi-Shifting Sand-Dunes, Semi-Fixed Sand-Dunes ), Fixed Sand-Dunes, Water Area, Rice, Residential, Highway 1. File format and naming The data is stored in ESRI Shapefile format, including the following layers: Desertification map of Daqinggou area in Horqin steppe, rivers, swamps, roads, lakes, residential areas 2. Data desertification attribute fields: Type of desertification (Shape), Grassland (Grassland), Woodland (Woodland), Woodland Density (W_density), Farmland (Farmland) 3. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Jianhua, ZHU Zhenda, FENG Yusun, YAO Fafen
The dataset contains all individual glacial storage (unit: km3) over the Qinghai-Tibetan Plateau in 1970s and 2000s. It is sourced from the resultant data of the paper entitled "Consolidating the Randolph Glacier Inventory and the Glacier Inventory of China over the Qinghai-Tibetan Plateau and Investigating Glacier Changes Since the mid-20th Century". The first draft of this paper has been completed and is planned to be submitted to Earth System Science Data journal. The baseline glacier inventories in 1970s and 2000s are the Randolph Glacier Inventory 4.0 dataset, and the Glacier Inventory of China, respectively. Based on the individual glacial boundaries extracted from the above-mentioned two datasets, the grid-based bedrock elevation dataset (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m), and the glacier surface elevation obtained by a slope-dependent method, the individual glacier volumes in 1970s and 2000s are then calculated. In addition, the calculated results of individual glacier volumes in this study have been compared and verified with the existent results of several glacier volumes, relevant remote sensing datasets, and the global glacier thickness dataset based on the average of multiple glacier model outputs (https://www.research-collection.ethz.ch/handle/20.500.11850/315707, doi:10.3929/ethz-b-000315707), and the errors in the calculations have also been quantified. The established dataset in this study is expected to provide the data basis for the future regional water resources estimation and glacier ablation-involved researches. Moreover, the acquisition of the data also provides a new idea for the future glacier storage estimation.
WANG Jianhua, ZHU Zhenda, FENG Yusun, YAO Fafen
This data is digitized from the "Yinchuan Land Use Status Map" of the drawing, which is a key scientific and technological research project in the "Seventh Five-Year Plan" of the country: "Three North" Shelter Forest Remote Sensing Comprehensive Survey, one of the series maps of Ganqingning Type Area, with the following information: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Editorial: Feng Yushun and Yao Fafen * Compilation: Yao Fafen, Li Zhenshan, Wang Xizhang, Zhu Che, Ma Bin, Yang Ping * Editors: Feng Yushun and Wang Yimou * Qing Hua: Wang Jianhua, Yao Fafen, Ma Bin, Li Zhenshan * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Desertification type map (desert), Yinchuan landuse map (landuse), railway, residential _ poly, residential, River, Road, Water_poly 3. Data Fields and Attributes Type number land_type Desert shape Paddy field Paddy field 12 Irrigated field 131 Plain non-irrigated field Valley non-irrigate field Slope non-irrigated field, 133 slope dryland 134 dryland Terrace non-irrigat field 14 Vegetable plot vegetable plot 15 Abandoned farmland Orchard orchard 31 Woodland ......... Specific attribute contents refer to data documents 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Jianhua, WANG Yimou, YOU Xianxiang, SHEN Yuancun, FENG Yusun, WANG Xian, YAO Fafen, SHEN Yuancun, FENG Yusun, YAO Fafen
The dataset covers western China. MSS remote sensing images Dataset properties: Pixel Size: 60m Reflective bands 4-7 (Landsat 1-3) and Bands 1-4 (Landsat 4-5) Output Format: GeoTIFF Resampling method: cubic convolution (CC) Map Projection: UTM – WGS 84 Polar Stereographic for the continent of Antarctica. Image Orientation: Map (North Up) Data sources were partially downloaded from http://eros.usgs.gov/ and some were collected from various projects. The data folder is named the row and column number where the image is located. The folder contains the MSS 4 band images (* .tif), header files (* .met, * .hdr), and thumbnails (jpg). The naming format of image files is row and column number_TM image mark (2m), and image acquisition time_band number. It is mainly used for thematic analysis and compilation of different scale thematic maps on agriculture, forestry, water, soil, geology, geography, geography, surveying and mapping, regional planning, and environmental monitoring.
EROS DATA CENTER
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn