The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 22, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the land surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrate (H01-H08) on Jun. 22, No.2 quadrate (H09-H16) on Jun. 23,No.3 quadrate (H17-H24) on Jun. 22, No.4 quadrat (H25-H32) on Jun. 23, No.5 quadrate (H33-H40) on Jun. 22, No.6 quadrate (H41-H48) on Jun. 23, No,7 quadrate (H49-H56) and No.8 quadrate (H57-H64) on Jun. 23. Data were archived in Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, NIAN Yanyun, WANG Xufeng, LIANG Wenguang
The dataset of diurnal FPAR change observations was obtained in the Yingke oasis foci experimental areas. Observation items included: (1) Maize canopy reflectance spectra by ASD and 50% grey board, leaf SPAD by the chlorophyll meter and leaf photosynthesis by LI-6400 in Yingke oasis maize field on Jul. 5, 2008 (fixed point observations from 10:00-20:00 at intervals of one hour, and half an hour from 16:00) Besides, Photo: photosynthetic rate (µmol CO2 m-2 s-1), Cond: stomatal conductance (mol H2O m-2 s-1), Ci: intercellular CO2 viscosity (µmol CO2 mol-1), Trmmol: transpiration rate (mmol H2O m-2 s-1), VpdL: vapor pressure deficiency of leaves (kPa), Tleaf: leaf temperature (°C), ParIn_µm: active radiation of interior photosynthesis (µmol m-2 s-1), and ParOutµm: active radiation of outdoor photosynthesis (µmol m-2 s-1) were all archived. (2) Maize canopy reflectance spectra, leaf photosynthesis and diurnal FPAR change by ASD (Institute of Remote Sensing Applications), 50% grey board (Institute of Remote Sensing Applications), LI-6400 (Institute of Remote Sensing Applications) and SUNSCAN (Beijing academy of Agriculture and Forestry Sciences). Based on calibration lamp data (serial number: 64831), radiance spectrum on Jul. 9 by 1050 spectrometer (Beijing academy of Agriculture and Forestry Sciences) and 50% grey board and 99% white board calibration data, the spectrum data were preprocessed. Calibration was undertaken in accordance with the following precedures: a) The original DN was converted into radiance and further into readable EXCEL format by the spectrometer-matched calibration lamp data and ASD. b) Solar radiance was got by 99% white board radiance. solar radiance=the reference board radiance/the reference board reflectance. c) Spectrum from Agriculture and Forestry Sciences was sampled at an interval of 1.438nm, which was made into data at 1nm intervals by segmentation interpolation. d) Based on b=16.087a (where a is radiance before fitting and b after fitting), radiance data got by 68731 spectrograph were processed. The original maize leaf photosynthesis data (by LI-6400) were introduced into EXCEL format, diurnal changes of each leaf were archived as one single unit according to leaf classification. Maize FPAR (the fraction of photosynthetically active radiation) was got by FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR= FPAR×canopy PAR. The unit for PAR was µmol m-2 s-1. The data included number (the whole leaf), observation time (hh:mm:ss), upper light (µmol m-2 s-1), upper reflectivity (µmol m-2 s-1), lower light (µmol m-2 s-1), lower reflectivity (µmol m-2 s-1) and Spread: variation coefficients of the probe optical intensity.
WANG Dacheng, YANG Guijun, CHENG Zhanhui, Liu Liangyun
Eo-1 (Earth Observing Mission) is a new Earth Observing satellite developed by NASA to replace Landsat7 in the 21st century. It was launched on November 21, 2000.The orbit of eo-1 satellite is basically the same as that of Landsat7, which is a solar synchronous orbit with an orbital altitude of 705km and an inclination Angle of 98.7°, which is 1min less than that of Landsat7 and crosses the equator.On board of EO 1 3 kinds of sensors, namely, the Advanced Land Imager (ALI (the Advanced Land Imager), atmospheric correction instrument AC (Atmosp heric Corrector) and compose a specular as spectrometer (Hyperion), Hyperion sensor is first spaceborne hyperspectral mapping measurement instrument, the hyperspectral data a total of 242 bands, spectral range is 400 ~ 2500 nm, spectral resolution up to 10 nm, ground resolution of 30 m. Currently, there are 6 scenes of eo-1 Hyperion data in heihe river basin.The coverage and acquisition time were: 4 scenes in the encrypted observation area of zhangye urban area + yingke oasis encrypted observation area (2007-09-10, 2008-05-12, 2008-05-20, 2008-07-15).Two scenes of the iceditch watershed observation area were encrypted, the time was 2008-03-17, 2008-03-22, respectively. Product grade is L1 without geometric correction. The eo-1 Hyperion remote sensing data set of heihe integrated remote sensing joint experiment was acquired by researcher wang jian and Beijing normal university through purchase. (note: "+" represents simultaneous coverage)
Institute of Remote Sensing and Digital earth, Chinese Academy of Sciences
The spot satellite series in France consists of five stars, of which spot 5 is the best. It was launched in May 2002, with a height of 830km, an orbit inclination of 98.7 degrees, and a sun synchronous quasi regression orbit, with a regression period of 26 days. Linear array sensor (CCD) and push scan scanning technology were used for imaging. SPOT5 satellite carries two high-resolution geometric imagers (HRG), one high-resolution Stereo Imager (HRS) and one wide field vegetation detector (VGT). It has five working bands, multi spectral band spatial resolution is 10m (short wave infrared spatial resolution is 20m), panchromatic band spatial resolution is 2.5m. At present, there are three spots of SPOT5 data in Heihe River Basin. The coverage and acquisition time are respectively: 1 scene in Linze area, including multispectral image with resolution of 10m and panchromatic image with resolution of 2.5m, with time of 2008-07-04; 1 scene in Zhangye City, with resolution of 2.5m, with time of 2008-03-29; 1 scene of multispectral data with resolution of 10m, with time of 2008-08-10. The product level is L1, and the product has undergone rough geometric correction. SPOT5 image is mainly used as the base map of geometric precision correction in Heihe experiment. The spot 5 remote sensing data set of Heihe comprehensive remote sensing joint experiment was purchased by Beijing Normal University.
Institute of Remote Sensing and Digital earth, Chinese Academy of Sciences
The vegetation regulation mechanism project of soil water cycle in arid desert areas belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by li xinrong, a researcher of the institute of environment and engineering in dry and cold areas, Chinese academy of sciences, with the running time of 2003.1-2005.12. Remittance data of the project: 1. Dataset of observation field of shapotou railway vegetation sand fixation protection system (excel) Plant and soil information in the vegetation-sand fixation zone established in 1956, 1964, 1981 and 1987.Since the establishment of the observation field, long-term soil moisture and vegetation surveys have been conducted. This database records the soil moisture data after the neutron tube installation in August 2002, the vegetation data from 2003 to 2005 (vegetation structure, herb structure, shrub structure, etc.), and the soil physical and chemical properties data (particle size, total N,P2O5,K2O, hydrolyzed N) of the irregular surveys. 2. Physiological data set of desert plant stress (excel) From 2003 to 2005, the physiological and biochemical characteristics of typical plant communities and their dominant species in steppe desert under natural and simulated environmental conditions were analyzed.(including photosynthetic transpiration, fluorescence, biochemistry and other indicators) 3. Soil infiltration and evapotranspiration data set (excel) Precipitation infiltration process, soil water dynamics and evapotranspiration of fixed sand dunes monitored by desert artificial vegetation using TDR and Lysimeters from 2002 to 2005. 4. Data set of comprehensive survey on soil and vegetation in the southeastern margin of tengger desert (excel) In 2003-2004, silver (sichuan), yan (latour) highway, silver (sichuan) (state) highway through the tengger desert area, set up along the road of eight samples, 449 samples of soil conductivity, Ph, organic matter, total nitrogen (content) and vegetation (plants, coverage, average height, biomass, strains, coverage, high average, biomass).
LI Xinrong
The integration of geomorphological information in western China was completed by a team led by Dr. Xie Chuanjie, Institute of Geography, Resources and Environment, Chinese Academy of Sciences. These include the national geomorphological database of 1: 4 million and the western geomorphological database of 1: 1 million. The geomorphological data of 1: 4 million are tracked, collected and collated by the Geography Department of the National Planning Commission of the Chinese Academy of Sciences, "China Geomorphological Map (1: 4 million)" edited by Li Bingyuan and "Geomorphological Map of China and Its Adjacent Areas (1: 4 million)" edited by Chen Zhiming. Scan and register the data, vectorize all registered maps by ArcMap software, and establish their own classification and code systems. Geomorphological types are divided into basic geomorphological types and morphological structure types (point, line and surface representation) according to map spots (common staining) and symbols. Data are divided into structural geomorphology and morphological geomorphology. Projection information: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: datumg Angular Unit: Degree (0.017453292519943299) Prime Meridian: <custom> (0.000000000000000000) Datum: D_Krasovsky_1940 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
CHENG Weiming, ZHOU Chenghu
The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.
ZHAO Chuanyan, MA Wenying
In August 2011 to October, 2012 in gansu province during may to August mazong mountain region field hydrogeological investigation, for each of groundwater, surface water outcropping points, according to the requirements of sampling, collecting water samples of 500 ml, sealed bottle, tag sampling time, location, number, send relevant qualification of laboratory tests, groundwater, surface water chemical analysis testing data obtained.Cations: Na+,K+,Mg2+,Ca2+, PH;Anions: F-,Cl-,NO3-,SO42-,HCO3-,CO32-;Trace elements, etc.In order to understand the chemical distribution of surface water and groundwater in the ma mane shan research area.
GUO Yonghai
This data includes experimental data of grassland interception control and observation data of maximum water holding capacity of grassland. The maximum water holding capacity experiment was carried out in 2011. The main vegetation types selected are Carex, Polygonum viviparum, Plantago asiatica and Potentilla chinensis. The maximum water holding capacity experiment was carried out on each type of samples and the samples were photographed. The specific data obtained are shown in the document. The grassland canopy interception was carried out in the growing season of 2012, and was completed by artificial rainfall control experiment. At the end of the growing season, the main types of grassland in the basin were sampled according to grazing and grazing ban. During artificial rainfall, rainfall and penetrating rainfall are recorded every 1min. Finally, the grassland canopy interception is calculated by the difference between rainfall and penetrating rainfall.
ZHAO Chuanyan, MA Wenying
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
WANG Jianhua, LIU Jiyuan, ZHUANG Dafang, ZHOU Wancun, WU Shixin
The data are soil moisture data of tianlaochi watershed in Qilian Mountain. The TDR probes of soil moisture in the whole watershed were buried on July, 19-august 23, 2013. The positions of these probes can represent the whole tianlaochi watershed. The four altitudes of Picea forest slope, shrub slope, Sabina forest slope and steppe were mainly sampled. The first observation will be carried out on July 19, with an interval of one week. If there is rainfall time, the observation will be carried out on the next day. At the last time of observation, soil samples were taken from all sampling points, and soil mass moisture content was measured in the laboratory, aiming to correct the data observed by TDR probe.
MA Wenying, ZHAO Chuanyan
This data set includes the information of 21 conventional meteorological observation stations in Heihe River Basin and its surrounding areas, of which Wutonggou and Quixote stations have been cancelled in the 1980s, and other stations have operated since the establishment of the station. Station name, longitude and latitude 1. Mazong mountain 97.1097 41.5104 2. Yumen town 97.5530 39.8364 3. Wutonggou 98.3248 40.4697 4. Jiuquan 98.4975 39.7036 5. Jinta 98.9058 39.9988 6. Dingxin 99.5117 40.3080 7. Gaotai 99.7907 39.3623 8. Linze 100.165 39.1385 9. Sunan 99.6178 38.8399 10. Yeniugou 99.5830 38.4167 11. Tole 98.0147 39.0327 12. Ejina Banner 101.088 41.9351 13. Guaizi Lake 102.283 41.3662 14. Zhangye 100.460 38.9124 15. Shandan 101.083 38.7746 16. Folk music 100.826 38.4376 17. Alxa Right Banner 101.429 39.1407 18. Yongchang 101.578 38.1771 19. Qilian 100.238 38.1929 20. Gangcha 100.111 37.2478 21. Menyuan 101.379 37.2513 22. Gekkot 99.7063 41.9183 23. Jiayuguan 98.2241 39.7975
National Meteorological Information Center
This data is soil evapotranspiration data of subalpine grassland in tianlaochi small watershed of Qilian Mountain. Lysimeter was used to observe soil evapotranspiration and provide basic data for the development of watershed evapotranspiration model. Six repeated experiments were conducted to observe the soil evapotranspiration of subalpine grassland during the whole growing season. At 8:00 and 20:00 every day, use an electronic scale with an accuracy of 1G to weigh the inner barrel. In case of rainfall, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage water in the leakage barrel at the same time. Observation instrument: 1) standard 20 cm diameter rain gauge. 2) Lysimeter was made by ourselves (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy 1g) is used to observe the weight change of lysimeter.
MA Wenying, ZHAO Chuanyan
Leaf area index (LAI), as a structural parameter of vegetation canopy, is an important input parameter for many inversion models such as energy and biomass inversion model. Firstly, vegetation points and ground points are separated in Terrasolid software. Then the transmittance of laser points is calculated, and the transmittance is the proportion of ground points to all points. After laser pulse hits the canopy, some energy passes through the voids between branches and leaves and continues to move forward until the energy is blocked, so some laser points will finally reach the ground. In this study, the ratio of the energy passing through the avoids to the energy of the canopy is used as the Laser Penetration Index (LPI). The LPI of each sample point at each scale in the study area was calculated.
ZHAO Chuanyan, MA Wenying
The content is 32 rainfall interception data of Picea crassifolia forest from May 24 to September 3, 2013. The sample plot is set in Qinghai Spruce Forest with an altitude of 2800m, the sample plot size is 30m × 30m, 90 rain cones with a diameter of 20cm are arranged in the sample plot with an interval of 3M, and 20 water tanks with two specifications (I is 200cm * 20cm, II is 400cm * 20cm) are arranged to observe the interception data in the forest. A dsj2 (Tianjin Meteorological Instrument Factory) siphon rain gauge was set up in the open land about 50m away from the sample site to observe the rainfall and rainfall characteristics outside the forest. After the end of each precipitation event and the stop of penetrating rain in the forest, measure and record the water quantity in each rain cone with a rain gauge.
MA Wenying, ZHAO Chuanyan
Location of automatic weather station: longitude and latitude 38.43n, 99.93e, altitude 3100m. The observation time is from May 9, 2013 to September 3, 2013, the parameter scale is hourly scale, and the data is recorded in 10min. The observation parameters include average wind speed (M / s), maximum wind speed (M / s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, par, air temperature, relative humidity, solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature.
MA Wenying, ZHAO Chuanyan
Canopy interception field is located in 2700m forest in Pailugou watershed of Qilian mountain, with 60 precipitation interception barrels arranged at equal intervals on the ground. The specifications of the interception barrel are: the radius of the bottom surface is 10cm and the height is 35cm. The observation period was from June to July 2012 and from July to September 2013, and 17 precipitation events (including each precipitation) were recorded. The unit is mm.
HE Zhibin
Leaf area index, also known as leaf area coefficient, refers to the multiple of the total area of plant leaves in the land area per unit land area. Leaf area index is an important structural parameter of ecosystem, which is used to reflect the number of plant leaves, the change of canopy structure, the life activity of plant community and its environmental effect, to provide structured quantitative information for the description of material and energy exchange on the canopy surface, and to balance the energy of carbon accumulation, vegetation productivity and the interaction between soil, plant and atmosphere, Vegetation remote sensing plays an important role. The leaf area index and other indexes of Picea crassifolia forest in Pailugou watershed were measured by plant canopy imager CI - 110
CHANG Xuexiang
Background: this data interchange is the first data interchange of the key project of "integrated study of eco-hydrological processes in heihe basin", "genomics research on drought tolerance mechanism of typical desert plants in heihe basin".The main research targets of the key projects is a typical sand desert plants are Holly, using the current international advanced a new generation of gene sequencing technology to the whole genome sequence and gene transcription of Holly group sequence decoding, so as to explore related to drought resistance gene and gene groups, and transgenic technology in model to verify their drought resistance in plants. Process and content: as genome sequencing requires special sequencing equipment, the project is huge and the process is complex (mainly including genome library construction, sequencing, data analysis and genome assembly), so it needs to be completed by a professional sequencing company.After contacting with sequencing companies, we learned that before sequencing an unknown genome, the size and complexity of the genome should be predicted, which is a necessary prerequisite for designing sequencing schemes and strategies.Therefore, in 2013, we mainly predicted the chromosome composition, genome size and complexity of sand Holly, and successfully established the extraction and purification method of its genomic DNA.The results showed that the plant was diploid, the genome was composed of 9 staining lines (18 lines of diploid), and the genome size was 1.07G.The quality test results of the genomic DNA indicated that the requirements of the obtained DNA complex sequencing have been sent to the sequencing company for library construction and sequencing, which is now in progress.In addition, in order to obtain a large number of uniform plant materials, we have discussed the induction of callus, which has been successful.Due to these reasons, we were unable to complete the genome sequencing and submit the relevant data of sand Holly in accordance with the original plan of the project this year, mainly because we did not count the predicted contents of the genome before. Data usage: the data obtained in this year on ploidy, karyotype composition and genome size of lycopodium SPP.The success of the callus induction provides a high-quality material guarantee for the subsequent transcriptome sequencing and drought-resistance mechanism research experiments, and it is also a new contribution to the cytological and physiological research of the plant.
HE Junxian, GU Lifei
The data was directly clipped from China's 1:100,000 land-use data.China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data).
LIU Jiyuan, WANG Jianhua
Precipitation is one of the elements of meteorological monitoring and a measurement basis of regional precipitation. Precipitation is the only source of water for plants’ survival in mountain areas. Therefore, precipitation is the main link of the forest hydrological cycle. This data only provides precipitation of the Pailugou watershed during the growing season.
CHANG Xuexiang
The runoff record of Pailugou watershed in the upper reaches of Heihe River, dated from January 2011 to September 2012. The data measuring device is the measuring weir at the exit of the small watershed, the unit of the data is m³/day.
HE Zhibin
ASAR (Advanced Synthetic Aperture Radar) is a Synthetic Aperture Radar sensor mounted on ENVISAT satellite. It operates in c-band with a wavelength of 5.6 cm and features multi-polarization, variable observation Angle and wide-range imaging. Heihe river basin of ENVISAT ASAR remote sensing data sets mainly through central Europe "dragon plan" project, the data to the Image mode, cross polarization (Alternating Polarisation) model with wide is given priority to, the spatial resolution of 30 meters. ENVISAT ASAR data 404 scenes are currently available in heihe river basin, including 82 scenes in APP mode, 7 scenes in IMP mode and 315 scenes in WSM mode. The acquisition time is: APP can choose the polarization mode, the time range is from 2007-08-15 to 2007-12-23, 2008-01-02 to 2008-12-20, 2009-02-15 to 2009-09-06; IMP imaging mode, time range from 2009-06-19 to 2009-07-12; WSM wide format, time range from 2005-12-05 to 2005-12-31,2006-01-06 to 2006-12-31, 2007-01-01 to 2007-12-30, 2008-01-01 to 2008-12-28, 2009-03-13 to 2009-05-22. Product level is L1B, without geometric correction, is amplitude data.
European Space Agency
Three artificial rainfall events were performed on the shady grassland at the altitude of 2700m in the Pailugou watershed of the Qilian Mountains. The times were July 15, 2011, July 16, and July 22, 2011, respectively. Runoff rate, data is recorded every half an hour. Two rainfall simulations were also performed on the sun-slope grassland at the same altitude. As a comparative experiment, the time was July 24 and 25, 2011.
HE Zhibin
Nine and six evaporation barrels were arranged in the 2700m Qinghai spruce forest and the shady grassland outside the forest in the Pailugou watershed of the Qilian Mountains. Specifications are 20cm in diameter and 80cm in height. The measurement date is from June 2012 to September 2012. Daily measurement is performed and the daily precipitation is recorded. The unit is mm.
HE Zhibin
The micro-meteorological field is located in the grassland of Pailugou watershed of Qilian Mountain with an altitude of 2700m. The data were recorded from January 2011 to July 2012, and the time interval was half an hour, including 1.5m humidity, 3m temperature, 2.8m air pressure, 1.3m rainfall, 2.2m wind speed, 3.1m total radiation, the units are %, °C, Pa, m, m/s, W•M-2.
HE Zhibin
The dataset investigated the growth status of plants and leaf morphological indexes of single and conjoined red sand and pearl in the middle and lower reaches of heihe river basin in 2013. The growth indexes were crown width, plant height, and biomass of fine roots and thick roots.Leaf shape indicators are: length, width, thickness, and leaf area, volume, etc.The experimental observation indexes are: leaf nitrogen content, water potential, gas exchange data, chlorophyll fluorescence data. Data include: field observation data and explanatory documents.
SU Peixi
The data of soil moisture in the Pailougou include the grassland on the shady slope of 2700m above sea level and the Picea crassifolia forest of 2800m above sea level. The soil water content monitoring system EM50 was used to measure the water content in five soil layers, 10cm, 20cm, 30cm, 40cm and 60cm respectively. The in-forest survey period is from June 2012 to September 2012, and there are also data for June 2013. The meadows were measured from June 2013 to October 2013. The measurement results are all volume water content in%.
HE Zhibin
The year-end ecological investigation was conducted in the late September and early October when plants stopped growing. There are 8 investigation and observation fields, they are: piedmont desert, piedmont Gobi, desert in the middle, Gobi in the middle reaches, desert in the middle reaches, downstream desert, downstream Gobi, and downstream desert, the size of each filed is 40m×40m. Three large quadrats of 20m×20m were selected in each observation field, named S1, S2, and S3, to conduce the regular shrub investigation; four small quadrats were selected from each large quadrat with a size of 5m×5m, named A, B, C, D, to conduct herbal investigation.
SU Peixi
In July and mid August 2012, plant species: Caragana. Using Li-6400 portable photosynthesis system (li-cor, USA) and li-3100 leaf area meter, the photosynthetic physiological characteristics of desert plants were observed. The symbols in the observation data have the following meanings: Obs, number of observations;Photo, net photosynthetic rate, moles of CO2 times m minus 2 times s minus 1; Cond, stomatal conductance, mol H2O•m -- 2•s -- 1;Ci, intercellular CO2 concentration, moles of CO2 times mol-1; Trmmol, transpiration rate, mmol H2O•m -- 2•s -- 1;Vpdl, water vapor pressure deficit, kPa; Area, leaf Area, cm2;Tair, atmospheric temperature, ℃; Tleaf, leaf surface temperature, ℃;CO2R, CO2 concentration in the reference chamber, moles of CO2•mol-1; CO2S, sample chamber CO2 concentration, moles of CO2•mol-1;H2OR, water in the reference chamber, mmol H2O•mol-1; H2OS, sample chamber moisture, mmol H2O•mol-1;PARo, photon flux density, mole •m -- 2•s -- 1; Rh-r, reference room air relative humidity, %;Rh-s, relative humidity of air in sample room, %; PARi, photosynthetic effective radiation, moles •m -- 2•s -- 1;Press, atmospheric pressure, kPa; Others are the state parameters of the instrument at the time of measurement.
SU Peixi
A small lysimeter was made to simulate the natural conditions and select typical desert plants as the objects to study the water consumption of drought stress treatment. Repeat 3 times for each plant. In 2012, the soil water content was kept at (20 ± 5)% of the field water capacity, and experiments on physiological water demand and water consumption were carried out under stress. In 2013, the soil water content was kept at (10 ± 3)% of the field water capacity, and further experiments on water consumption and water consumption law were carried out under drought stress.
SU Peixi
As determined in mid-august 2013, planting species: bubbly spines (different habitats are mid-range intermountain lowland and gobi), red sand (different habitats are mid-range gobi and downstream gobi). Using the brother company of LI - 6400 Portable Photosynthesis System (Portable Photosynthesis System, LI - COR, USA) and LI - 3100 leaf area meter, etc., to the desert plant photosynthetic physiological characteristics were observed. The symbolic meaning of the observed data is as follows: Obs,observation frequency ; Photo ,net photosynthetic rate,μmol CO2•m–2•s–1; Cond stomatal conductance,mol H2O•m–2•s–1 ; Ci, Intercellular CO2 concentration, μmol CO2•mol-1; Trmmol,transpiration rate,mmol H2O•m–2•s–1; Vpdl,Vapor pressure deficit,kPa; Area,leaf area,cm2; Tair,free air temperature ,℃; Tleaf,Leaf temperature,℃; CO2R,Reference chamber CO2 concentration,μmol CO2•mol-1; CO2S,Sample chamber CO2 concentration,μmol CO2•mol-1; H2OR,Reference chamber moisture,mmol H2O•mol-1; H2OS,Sample chamber moisture,mmol H2O•mol-1; PARo,photon flux density,μmol•m–2•s–1; RH-R,Reference room air relative humidity,%; RH-S,Relative humidity of air in sample room,%; PARi,Photosynthetic effective radiation,μmol•m–2•s–1; Press,barometric pressure,kPa; Others are the state parameters of the instrument at the time of measurement.
SU Peixi
In the middle of August 2013, photosynthesis of population was measured, and plant species: red sand. The group photosynthesis measurement system consists of li-8100 closed-circuit soil carbon flux automatic measurement system (li-cor, USA) and assimilation box designed and manufactured by Beijing ligotai science and Technology Co., Ltd. li-8100 is an instrument produced by li-cor company of USA for soil carbon flux measurement. The concentration of CO2 and H2O is measured by infrared gas analyzer. The length, width and height of assimilation boxes were all 50 cm. The assimilator is controlled by li-8100. After the measurement parameters are set, the instrument can run automatically.
SU Peixi
On the basis of physiological and biochemical analysis of photosynthetic organs (leaves or assimilating branches) of typical desert plants in heihe river basin collected in mid-july 2011, some photosynthetic organs of desert plants were collected in mid-july 2012 and put into a liquid nitrogen tank and brought back to the laboratory for determination. Physiological analysis indexes mainly include: soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.
SU Peixi
At the end of September and the beginning of October, 2013, desert plants in typical areas of heihe basin stopped their growth period to conduct year-end ecological survey. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
SU Peixi
The source data of this data set are 1:1 million Chinese soil maps and 8,595 soil profiles from the second soil census.The data include section depth, soil thickness, sand, silt, clay, gravel, bulk density, porosity, soil structure, soil color, pH value, organic matter, nitrogen, phosphorus, potassium, exchangeable cation amount, exchangeable hydrogen, aluminum, calcium, magnesium, potassium, sodium ion and root amount.The dataset also provides data quality control information. The data is in raster format with a spatial resolution of 30 arc seconds.To facilitate the use of CLM model, soil data is divided into 8 layers, with the maximum depth of 2.3 meters (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) Data file description: 1 Soil profile depth PDEP.nc 2 Soil layer depth "LDEP.nc LNUM.nc" 3 pH Value (H2O) PH.nc 4 Soil Organic Matter SOM.nc 5 Total N TN.nc 6 Total P TP.nc 7 Total K TK.nc 8 Alkali-hydrolysable N AN.nc 9 Available P AP.nc 10 Available K AK.nc 11 Cation Exchange Capacity (CEC) CEC.nc 12 Exchangeable H+ H.nc 13 Exchangeable Al3+ AL.nc 14 Exchangeable Ca2+ CA.nc 15 Exchangeable Mg2+ MG.nc 16 Exchangeable K+ K.nc 17 Exchangeable Na+ NA.nc 18 Particle-Size Distribution Sand SA.nc Silt SI.nc Clay CL.nc 19 Rock fragment GRAV.nc 20 Bulk Density BD.nc 21 Porosity POR.nc 22 Color (water condition unclear) Hue Unh.nc Value Chroma Unc.nc 23 Dry Color Hue Dh.nc Value Chroma Dc.nc 24 Wet Color Hue Wh.nc Value Chroma Wc.nc 25 Dominant and Second Structure S1.nc SW1.nc RS.nc 26 Dominant and Second Consistency C1.nc CW1.nc RC.nc 27 Root Abundance Description R.nc
SHANGGUAN Wei, DAI Yongjiu
This dataset includes eight scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd hh:mm) 2012-05-24, 2012-06-04, 2012-06-26, 2012-07-07, 2012-07-29, 2012-08-09, 2012-08-14, 2012-08-25. The data were all acquired around 19:00 (BJT) at StripMap mode with product level of MGD. Within them, the former six images are of HH/VV polarization with low incidence angle (22-24°), while the later two images acquired on 2012-08-14 and 2012-08-25 are of VV/VH polarization with higher incidence angle (39-40°). TerraSAR-X dataset was acquired from German Space Agency (DLR) through the general proposal of “Estimation of eco-hydrological variables using TerraSAR-X data in the Heihe River Basin, China” (project ID: HYD2096).
German Space Agency (DLR)
In this dataset samples were obtained from groundwater outcrop points and surface water points through the field hydrogeological survey of mabongshan, and the analysis data of deuterium - oxygen - 18 and tritium were obtained by sending them to the laboratory with relevant qualification. This dataset can obtain the isotopic information of groundwater and surface water in the research area of the project, and provide data reference for the water circulation law in the research area.
GUO Yonghai
The data is the railway distribution map of the north slope of Tianshan River Basin, with a scale of 25000 and the projection is longitude and latitude. the data includes spatial data and attribute data, and the attribute field is code (railway code).
National Basic Geographic Information Center
The dataset is a vector map of administrative boundaries of rivers in the north slope of Tianshan Mountains, with a scale of 250,000, projection: longitude and latitude, data includes spatial data and attribute data, and attribute fields: Name (name of county boundary) and Code (administrative code).
National Basic Geographic Information Center
The data is the land cover data set of Tarim River Basin, which comes from "China's 1:100000 land use data set" in 2000. It is constructed based on LANDSAT MSS, TM and ETM Remote Sensing Data in three years by means of satellite remote sensing. Using a hierarchical land cover classification system, this data divides the whole country into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class categories. The attribute fields are area, perimeter, code, and name.
LIU Jiyuan, ZHUANG Dafang, WANG Jianhua, ZHOU Wancun, WU Shixin
The dataset is the HWSD soil texture dataset in the north slope of the Tianshan River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, 2009. The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.
Food and Agriculture Organization of the United Nations(FAO)
The data is the reservoir distribution dataset of the north slope of Tianshan River Basin, which is comprehensively prepared by using topographic map and remote sensing image. The scale is 250000, and the projection is latitude and longitude. The data includes spatial data and attribute data, and the attribute field is Name (reservoir name), reflecting the reservoir distribution status of River Basin in the northern foot of Tianshan Mountain around 2000.
National Basic Geographic Information Center
The data set is the qaidam river basin administrative boundary vector map, scale 250000, projection: longitude and latitude, the data contains spatial data and attribute data, mainly the qaidam river basin county boundary name and administrative code.
WU Lizong
The data is the river dataset of Qinghai Lake Basin. It is revised according to the topographic map and TM remote sensing image. The scale is 250,000. The projected latitude and longitude. The data includes spatial data and attribute data. The attribute data fields are: HYD_CODE (river code), Name (river name), SHAPE_leng ( River length).
National Basic Geographic Information Center
This data set contains the eddy related data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. For more information, see the documentation that came with the data.
Zhangye city meteorological bureau
The data is a distribution map of the qaidam river basin, with a scale of 250000 and projected longitude and latitude, including the spatial data and attribute data of the qaidam river basin. The attribute data fields are Area, Perimeter, WRRNM and WRRCD.
National Basic Geographic Information Center
The data is the resident site distribution dataset of the north slope of Tianshan River Basin, including the hierarchical distribution of cities, counties, towns and villages at the north slope of Tianshan River Basin. The data mainly has two attribute fields: Code (residential area code) and Name (residential area name).
National Basic Geographic Information Center
The data is the railway map of Qinghai Lake Basin, with a scale of 250,000, projection: latitude and longitude. The data includes spatial data and attribute data. The attribute field is code (railway code).
National Basic Geographic Information Center
The VEGETATION sensor sponsored by the European Commission was launched by SPOT-4 in March 1998. Since April 1998, SPOTVGT data for global vegetation coverage observation has been received by Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides relevant parameters (such as calibration coefficient number). Finally, the Belgian flemish institute for technological research (Vito)VEGETATION processing Centre (CTIV) is responsible for preprocessing into global data of 1km per day. Pretreatment includes atmospheric correction, radiation correction, geometric correction, production of 10 days to maximize the synthesized NDVI data, setting the value of -1 to -0.1 to -0.1, and then converting to the DN value of 0-250 through the formula DN= (NDVI+0.1)/0.004. The dataset is a long-time series vegetation index dataset of Qinghai Lake Basin, which is mainly aimed at normalized difference vegetation index (NDVI). It includes spectral reflectance of four bands synthesized every 10 days from 1998 to 2008 and maximum NDVI for 10 days, with a spatial resolution of 1km and a temporal resolution of 10 days.
Flemish Institute for Technological Research (VITO)
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn