The dateset of sun photometer observations was obtained in the Biandukou foci experimental area from Mar. 7 to 17, 2008, simultaneous with MODIS and TM. Those provide reliable data for atmosphere correction of the same period in this area. Atmospheric parameters were measured by CE318. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired. Column water vapor can also be retrieved according to data in 936 nm. The dataset archived in txt files includes processed data on Mar. 7, 14 and 17 respectively.
SU Gaoli
The dataset of sun photometer observations was obtained in Linze grassland station, the reed plot A, the saline plot B, the barley plot E, the observation stationof the Linze grassland foci experimental areaand Jingdu hotel of Zhangye city. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318 from May 30 to Jun. 11, 2008. And from Jun. 15 to Jul.11, the data of 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were acquired. Both measurements were carried out at intervals of 1 minute. Optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, air temperature and pressure near land surface, the solar azimuth and zenith could all be further retrieved. Readme file was attached for detail.
LIANG Ji, WANG Xufeng
The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in the arid region hydrological experimental area on Sep. 19, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Those provide reliable ground data for remote sensing retrieval and validation of soil moisture from Envisat ASAR image. Observation items included: (1) soil moisture measured by the cutting ring method in Linze reed land, Zhangye farmland, Zhangye gobi, Linze maize land, Linze alfalfa land, Zhangye weather station, and Linze wetland. (2) GPS measured by GARMIN GPS 76 (3) vegetation measurements including the vegetation height, the green weight, the dry weight, the sampling method, and descriptions on the land type, uniformity and dry and wet conditions (4) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) archived as Excel files are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) roughness measured by the roughness plate together with the digital camera. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing (Vol. II). The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each text files (.txt) file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking.
CHE Tao, LI Xin, BAI Yunjie, DING Songchuang, GAO Song, HAN Xujun, HAO Xiaohua, LI Hongyi, LI Zhe, LIANG Ji, PAN Xiaoduo, QIN Chun, RAN Youhua, WANG Xufeng, WU Yueru, YAN Qiaodi, ZHANG Lingmei, FANG Li, LI Hua, Liu Qiang, Wen Jianguang, MA Hongwei, YAN Yeqing, YUAN Xiaolong
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.
CHANG Sheng, CHANG Yan, Fang Qian, QU Ying, LIANG Xingtao, LIU Zhigang, PAN Jinmei, PENG Danqing, REN Huazhong, ZHANG Yongpan, ZHANG Zhiyu, ZHAO Shaojie, Zhao Tianjie, ZHENG Yue, Zhou Ji, LIU Chenzhou, YIN Xiaojun, ZHANG Zhiyu
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
CHE Tao, BAI Yunjie, DING Songchuang, GAO Song, HAN Xujun, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe, LIANG Ji, PAN Xiaoduo, QIN Chun, RAN Youhua, WANG Xufeng, WU Yueru, YAN Qiaodi, ZHANG Lingmei, FANG Li, LI Hua, Liu Qiang, Wen Jianguang, MA Hongwei, YAN Yeqing, YUAN Xiaolong
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.
CHEN Ling, HE Tao, REN Huazhong, REN Zhixing, YAN Guangkuo, ZHANG Wuming, XU Zhen, LI Xin, GE Yingchun, SHU Lele, JIANG Xi, HUANG Chunlin, GUANG Jie, LI Li, LIU Sihan, WANG Ying, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, CHEN Shaohui, LIANG Wenguang, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun, YANG Tianfu
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 7, 2008. Observation items included: (1) the radiative temperature by the thermal camera (Institute of Remote Sensing Applications) of maize, wheat and the bare land of Yingke oasis maize field at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format, and blackbody calibrated data and processed data were all archived as Excel files. (2) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-1603nm) from Institute of Remote Sensing Applications (CAS). The grey board and the black and white cloth were also used for calibration on the CCD camera. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) the component temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (5) the radiative temperature by the handheld radiometer (emissivity = 1.0) in Yingke oasis maize field (for the canopy mean temperature), Huazhaizi desert maize field (for the transect temperature), Zhangye airport (the black and white cloth for calibration) and Huazhaizi desert No. 2 plot (the diagonal radiative temperature and the radiative temperature of 30m*30m subplot). The component temperature was also measured. The data included raw data (in Word format), recorded data and the blackbody calibrated data (as Excel files). (6) The air temperature (°C) , the soy bean leaf temperature (°C) and the maize leaf temperature (°C) by SPAD (from Institute of Remote Sensing Applications (CAS)) in Yingke oasis maize field. Besides, spectrum, photosynthesis, fluorescence and chlorophyll were measured as well. (7) The leaf reflectance spectra ASD (serial number: 64831) and 50% grey board from Institute of Remote Sensing Applications (CAS). The spectral DN was changed into radiance based on the 50% grey board calibration data and calibration lamp data, which could further be transformed into Excel format. Moreover, the solar radiance=the reference board radiance/the reference reflectance. (8) The leaf fluorescence by ImagingPam from Beijing Academy of Agriculture and Forestry Sciences. YII = (Fm'-F)/Fm' was applied for caculation, F indicating fluorescence before saturating flash light, Fm' the maximum fluorescence before saturating flash light, and YII the quantum yield of photosystem II. Data were archived in pim and could be read by ImagingPam, which can be downloaded from http://www.zealquest.com. (9) The leaf photosynthesis by LI-6400. (10) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s in Yingke oasis maize field and Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (11) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (12) Atmospheric parameters near Daman Water Management office by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, REN Huazhong, WANG Tianxing, YAN Guangkuo, HAO Xiaohua, WANG Shuguo, LI Li, LI Hua, LIU Sihan, SU Gaoli, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, LI Xinhui, YU Fan, ZHU Xiaohua, YANG Guijun, CHENG Zhanhui, Liu Liangyun
The dataset of ground truth measurements synchronizing with EO-1 Hyperion was obtained in the Yingke oasis foci experimental area from Sep. 5 to Sep. 10, 2007 during the pre-observation period. It was carried out by the 3rd and 2nd sub-projects of CAS’s West Action Plan along Zhangye city-Yingke oasis-Huazhaizi, and on the very day of 10, one scene of Hyperion was captured. sampling plot time north latitude east longitude elevation notes 1 9:58 38°53′53.2″ 100°26′09.7″ 1500 cauliflower land east to the road 2 10:51 38°52′39.8″ 100°25′33.1″ 1510 cabbage land east to the road 3 11:35 38°52′39.0″ 100°25′34.6″ 1510 east to No. 2 sampling plot, maize and intercropping wheat reaped 4 12:24 38°51′53.0″ 100°25′08.0″ 1510 maize seed 5 13:08 38°51′54.2″ 100°25′09.5″ 1520 north to No. 4 sampling plot, maize and intercropping wheat reaped 6 14:40 38°51′23.5″ 100°24′45.0″ 1510 west to the road, maize seed, serious blights (red spider) 7 15:40 38°49′26.6″ 100°23′23.7″ 1540 intercrop land of sea buckthorn and beet 8 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land, rich of amaranth weeds 9 16:18 38°49′06.4″ 100°23′30.8″ 1540 beet land 10 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land with less weeds 11 10:30 38°48′28.3″ 100°24′11.4″ 1540 sea buckthorn seedling land west to the road 12 11:24 38°48′09.3″ 100°24′10.1″ 1550 sun flower land east to the road, intercropping wheat reaped 13 12:38 38°46′16.3″ 100°23′14.2″ 1600 dry rice land 14 12:45 38°46′16.2″ 100°23′14.0″ 1600 rape land 15 12:54 38°46′15.6″ 100°23′13.8″ 1600 buckwheat land 16 14:52 38°45′55.5″ 100°23′00.1″ 1610 maize (without intercrop) 17 15:28 38°45′57.5″ 100°22′28.3″ 1630 maize (without intercrop) 18 16:20 38°43′17.3″ 100°22′53.4″ 1730 gobi (Bassia dasyphylla and margarite dominate) 19 17:40 38°42′31.8″ 100°22′56.8″ 1780 gobi (Bassia dasyphylla and Sympegma regelii dominate) 20 10:27 38°36′25.1″ 100°20′33.2″ 2260 wheatgrass dominates 21 11:10 38°36′24.4″ 100°20′38.1″ 2260 abandoned composite land 22 11:30 2260 near site 22, wheatgrass and composite cenosis 23 bare land 24 13:09 38°38′46.3″ 100°23′08.5″ 2030 alfalfa land 25 14:39 38°44′30.8″ 100°22′41.0″ 1660 poplar 26 9:47 38°58′11.4″ 100°26′18.3″ 1460 rice land Observation items included: (1) quadrat surveys (2) LAI by LAI-2000 (3) ground object reflectance spectra by ASD FieldSpec Pro (350-2500nm)from Gansu Meteorological Administration (4) the land surface temperature and the canopy radiative temperature by the hand-held thermal infrared sensor (5) the photosynthesis rate by LI-6400 (6) the radiative temperature by ThermaCAM SC2000 (7) Atmospheric parameters by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S codes (8) chlorophyll consistency by portable SPAD Those provide reliable ground data for developing and validating retrieval meathods of biophysical parameters from EO-1 Hyperion images.
MA Mingguo, LI Xin, SU Peixi, DING Songchuang, GAO Song, YAN Qiaodi, ZHANG Lingmei, WANG Xufeng, Qian Jinbo, BAI Yunjie, HAO Xiaohua, Liu Qiang, Wen Jianguang, XIN Xiaozhou, WANG Xiaoping, HAN Hui
The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.
YU Wenping, WANG Zengyan, MA Mingguo
The dataset of ground truth measurement synchronizing with Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 20, 2008. Observation items included: (1) LAI in Yingke oasis maize field. The maximum leaf length and width of each alfalfa and barley were measured. Data were archived in Excel format. (2) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) the radiative temperature by 3 handheld radiometers in Yingke oasis maize field (Institute of Remote Sensing Applications, BNU and Institute of Geographic Sciences and Natural Resources respectively, the vertical canopy observation and the transect observation), and by 3 handheld infrared thermometers in Huazhaizi desert No. 2 plot (the vertical vegetation and bare land observation). The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (4) the radiative temperature of maize, wheat and the bare land of Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (5) Photosynthesis of maize, wheat and the bare land of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (6) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (7) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Coverage fraction of Reaumuria soongorica by the self-made coverage instrument and the camera (2.5m-3.5m above the ground) in Huazhaizi desert No. 2 plot. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS data was used for the location and the technology LAB was used to retieve the coverage fractionof the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the vegetation iamge and coverage (by .exe). (9) The radiative temperature of Reaumuria soongorica canopy and the bare land by 2 fixed automatic thermometers (FOV: 10°; emissivity: 0.95) in Huazhaizi desert No. 2 plot, observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were all archived in Excel format.
CHAI Yuan, CHEN Ling, KANG Guoting, LI Jing, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jindi, XIAO Zhiqiang, YAN Guangkuo, SHU Lele, GUANG Jie, LI Li, Liu Qiang, LIU Sihan, XIN Xiaozhou, ZHANG Hao, ZHOU Chunyan, TAO Xin, YAN Binyan, YAO Yanjuan, TIAN Jing, LI Xiaoyu
The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 4, 2008. Observation items included: (1) ground object reflectance spectra of maize and wheat in Yingke oasis maize field by ASD FieldSpec (350~2500 nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS); and of the black and white cloth, the water body, vegetation and the cement floor in the resort calibration site by ASD (350-2500nm, fixed points observation) from BNU. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (2) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), the maize field (intensive) near the resort (the transect observation) and Huazhaizi desert No. 1 plot (the diagonal and the fixed point observation) by the handheld infrared thermometer (emissivity: 1.00). As for the fixed point observation, 25 corner points were chosen in the plot of 30m×30m, and at each point, the bare land was measured twice and the vegetation once. Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived. (3) Atmospheric parameters on the ICBC resort office roof by CE318 (produced by CIMEL in France) from Institute of Remote Sensing Applications. The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) Photosynthesis of wheat and maize by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (5) the radiative temperature vegetation (Reaumuria soongorica) and the bare land in Huazhaizi desert No. 1 plot by ThermaCAM SC2000 ( (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer at nadir in Yingke oasis maize field (2 from BNU, FOV: 10°; emissivity: 0.95, at intervals of 1s, set above the maize canopy and the bare land between ridges and the third from Institute of Remote Sensing Applications, emissivity: 1.0, at intervals of 0.05s, set above the maize canopy), Yingke wheat field (one set above the wheat canopy), Huazhaizi desert No. 1 plot (one set above the barley canopy), and in the resort calibration site (one for the cement floor). Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Wheat albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) Wheat FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (9) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were from Jun. 6, 2008, archived in Excel format.
CHEN Ling, REN Huazhong, ZHOU Hongmin, CAO Yongpan, SHU Lele, WU Yueru, XU Zhen, LI Li, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, TAO Xin, FENG Lei, LIANG Wenguang, YU Fan, WANG Dacheng, YANG Guijun, LI Xiaoyu, Liu Liangyun
The dataset of ground truth measurements synchronizing with ASTER was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 28, 2008. Observation items included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Photosynthesis by LI-6400. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (5) the radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 using ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), 3 for maize canopy, the bare land and wheat canopy in Yingke oasis maize field, one for maize canopy in Huazhaizi desert maize field, and 2 for vegetation and the desert bare land in Huazhaizi desert No. 2 plot,at nadir at a time interval of one second. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format. (9) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (10) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), Huazhaizi desert maize field (the transect observation) and Huazhaizi desert No. 2 plot (the diagonal observation) by the handheld infrared thermometer (BNU and Institute of Remote Sensing Applications). Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived.
CHAI Yuan, CHEN Ling, KANG Guoting, QIAN Yonggang, REN Huazhong, WANG Haoxing, WANG Jianhua, SHU Lele, LI Li, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, ZHOU Mengwei, TAO Xin, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature by the handheld radiometer (BNU) in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (2) The component temperature of maize and wheat by the handheld radiometer in Yingke oasis maize field, Yingke wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The radiative temperature and the canopy multi-angle radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (2 instruments for maize canopy), Huazhaizi desert maize field (only one for maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). The thermal infrared remote sensing calibration was carried out in the resort plot. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (5) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage. (6) Reflectance spectra of Yingke oasis maize field (350-2500nm, from Institute of Remote Sensing Applications) and resort calibration site (350-2500nm, from Beijing Univeristy) by ASD (Analytical Sepctral Devices); BRDF by the self-made observation platform. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (7) Atmospheric parameters at the resort calibration site by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Soil moisture (0-40cm) by the cutting ring, the soil temperature by the thermocouple thermometer, roughness by the self-made roughness board and the camera in Huazhaizi desert No. 1 plot. Sample points were selected every 30m along the diagonals. Data were all archived in Excel format. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (10) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Word. LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format of May 31.
CHAI Yuan, CHEN Ling, HE Tao, KANG Guoting, QIAN Yonggang, REN Huazhong, REN Zhixing, WANG Haoxing, ZHANG Wuming, ZOU Jie, GE Yingchun, SHU Lele, WANG Jianhua, XU Zhen, GUANG Jie, LIU Sihan, XIN Xiaozhou, ZHANG Yang, ZHOU Chunyan, LIU Xiaocheng, TAO Xin, LIANG Wenguang, WANG Dacheng, LI Xiaoyu, CHENG Zhanhui, YANG Tianfu, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 16, 2008. Observation items included: (1) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (2) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (4) The reflectance spectra by ASD through the vertical canopy observation and the transect observation in Yingke oasis maize field (350-2500nm , from BNU), and Huazhaizi desert maize field and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). Raw data, blackbody calibrated data and processed data were all archived in Excel format. (6) Photosynthesis of maize and wheat of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (7) Soil moisture in Yingke oasis maize field. The sample was fetched by the soil auger and weighed by the scales before and after drying. Data were archived in Excel format. (8) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
CHEN Ling, REN Huazhong, ZHOU Hongmin, CAO Yongpan, SHU Lele, WU Yueru, XU Zhen, LI Li, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, TAO Xin, FENG Lei, LIANG Wenguang, YU Fan, WANG Dacheng, YANG Guijun, LI Xiaoyu, Liu Liangyun
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 22, 2008. Observation items included: (1) Albedo by the shortwave radiometer in Huazhaizi desert No. 2 plot. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (2) BRDF of maize in Yingke oasis maize field by ASD (350-2 500 nm) from Beijing University and the observation platform of BNU make. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°; BRDF in Huazhaizi desert No. 2 plot by ASD from Institute of Remote Sensing Applications (CAS) and the observation platform of its own make, whose maximum height was 2m above the ground with the zenith angle -70°~70°. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
CHEN Ling, GUO Xinping, REN Huazhong, ZOU Jie, LIU Sihan, ZHOU Chunyan, FAN Wenjie, TAO Xin
The dataset of sun photometer observations was obtained in the Binggou watershed foci experimental areas (N38°04′1.4″/E100°13′15.6″, 3414.41m) from Mar. 15 to Apr. 2, 2008 (to be specific, the daytime of 15-03-2008, 16-03-2008, 17-03-2008, 18-03-2008, 19-03-2008, 21-03-2008, 22-03-2008, 23-03-2008, 24-03-2008, 25-03-2008, 26-03-2008 and 27-03-2008). Those provide reliable data for retrieval of optical depth, Rayleigh scattering, aerosol optical depth, column water vapor (through data in 936 nm) and with various parameters in 550nm, the horizontal visibility can be further developed by MODTRAN or 6S. The optical depth in 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were all acquired. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empirical method, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors in instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibration in the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from the empirical method, and need further validation. Raw data were archived in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two subfolders including raw data and processed data (Geometric Positions and the Total Optical Depth of Each Channel and Rayleigh Scattering and Aerosol Optical Depth of Each Channel), and three data files (Directions on Data Observations, Raw Data and Proprocessed Data) were archived.
FANG Li, SU Gaoli, LIU Qinhuo
The dataset of sun photometer observations was obtained in the Zhangye city foci experimental areas (38°56′8.9″N, 100°27′8.3″E, 1400m) from Mar. 30 to Apr. 2, 2008. Measurements were carried out by CE318 for 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data on Mar. 30 and 31, Apr. 1 and 2, 2008. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see “Geometric Positions and the Total Optical Depth of Each Channel” and “Rayleigh Scattering and Aerosol Optical Depth of Each Channel”).
FANG Li, SU Gaoli
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire VNIR, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Emissivity of maize and wheat in the Yingke oasis by portable 102F (2.0~25.0um) from BNU. Warm blackbody, cold blackbody, the target and the au-plating board of known emissivity. Raw data of those four measurements were archived in *.WBX, *.CBX, *.SAX and *.CBX Besides, the spectral radiance and emissivity calculated by 102F were archived in *.RAX and *.EMX, respectively. Meanwhile, the final spectral emissivity of targets were also calculated by TES (ISSTES). (3) LAI of mazie and wheat in Yingke oasis maize field. The maximum leaf length and width of leaves were measured. Data were archived as Excel files of Jul. 2. (4) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in MS Office Word format. (5) the radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), measured at nadir with time intervals of one second in Yingke oasis maize field (one from BNU and the other from Institute of Remote Sensing Applications), Huazhaizi desert maize field (only one from BNU for continuous radiative temperature of the maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the background bare soil). Raw data, blackbody calibrated data and processed data were all archived as Excel files. (6) the component temperature in Yingke oasis maize field (by the handheld radiometer and the thermal image from BNU), Yingke oasis wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in MS Office Word format), recorded data and the blackbody calibrated data (in Excel format). (7) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the observation height). Data were archived in MS Office Excel format. (8) the radiative temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the NE-SW diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (9) ground object reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350~2 500 nm) from BNU. The vertical canopy observation and the line-transect observation were used. The data included raw data (from ASD, read by ViewSpecPro), recorded data and processed data on reflectance (in Excel format).
CHEN Ling, GUO Xinping, REN Huazhong, WANG Tianxing, XIAO Yueting, YAN Guangkuo, CHE Tao, GE Yingchun, GAO Shuai, LI Hua, LI Li, LIU Sihan, SU Gaoli, WU Mingquan, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, FAN Wenjie, SHEN Xinyi, YU Fan, YANG Guijun, Liu Liangyun
The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) Atmospheric parameters in Huazhaizi desert No. 2 plot from CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (2) Radiative temperature of maize, wheat and the bare land (in Yingke oasis maize field), vegetation and the bare land (Huazhaizi desert No. 2 plot) by the thermal cameras at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format and radiative files are stored in Excel format. . (3) Photosynthesis by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (4) Ground object reflectance spectra in Yingke oasis maize field, Huazhaizi maize field, Huazhaizi desert No. 1 and 2 plots, by ASD FieldSpec (350~2500 nm) from Institute of Remote Sensing Applications (IRSA), CAS. Raw data were binary files direct from ASD (by ViewSpecPro), which were recorded daily in detail, and pre-processed data on reflectance were in .txt format. (5) The radiative temperature in Huazhaizi desert No. 2 plot by the handheld infrared thermometer (BNU and IRSA). Raw data, blackbody calibrated data and processed data (in Excel format) were all archived. (6) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (7) The radiative temperature of the maize canopy by the automatic thermometer (FOV: 10°; emissivity: 0.95) mearsued at nadir with an time intervals of 1s in Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived as Excel files. (8) Maize albedo from two shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.
REN Huazhong, WANG Tianxing, YAN Guangkuo, LI Li, LI Hua, LIU Sihan, XIA Chuanfu, XIN Xiaozhou, ZHOU Chunyan, ZHOU Mengwei, YANG Guijun, LI Xiaoyu, CHENG Zhanhui, Liu Liangyun
The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 1, 2008. Observation items included: (1) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (2) BRDF of maize by ASD (350~2 500 nm) from Institute of Remote Sensing Applications (CAS) and the self-made multi-angluar observation platform of BNU make in Yingke oasis maize field. The maximum height of the platform was 5m above the ground with the azimuth 0~360° and the zenith angle -60°~60°. An automatic thermometer was attached to the platform for the multiangle radiative temperature. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel. (3) The radiative temperature of the maize canopy by the automatic thermometer (emissivity: 0.95),at a hight of 50cm from the crown in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (4) Atmospheric parameters at the resort by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for details. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) The multiangle radiative temperature by the automatic thermometer (emissivity: 1.0) attached on the observation platform, at an interval of 0.05s. The data were archived in .txt files (.dat format). The first seven lines were the header file, including acquisition date, time, and intervals; besides, Time (starting time), TObj (target temperature), Tint (the interior temperature of the probe), TBox (the temperature of the box) and Tact (the actual temperature calculated from the given emissivity) were also listed.
CHEN Ling, REN Huazhong, XIAO Yueting, SU Gaoli, WU Mingquan, WU Chaoyang, XIA Chuanfu, ZHOU Chunyan, ZHOU Mengwei, SHEN Xinyi, YANG Guijun
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn