Net Primary Production (NPP) refers to the amount of energy consumed by plant respiration, which is deducted from the fixed energy of plant photosynthesis during the primary production process. The remaining energy can be used for plant growth and reproduction. The production volume is usually expressed as the dry weight of organic matter produced per square meter per year [g/(m2 · a)] or the fixed energy per square meter per year [J/(m2 · a)]. This data comes from MODIS-NPP data - MOD17A3HGF V6 product, which provides annual net primary productivity (NPP) information at a resolution of 500 meters. The annual net primary productivity is determined by the sum of all 8-day net photosynthetic (PSN) products (MOD17A2H) for a given year. The PSN value is the difference between total primary productivity (GPP) and sustained respiration (MR) (GPP MR).
WANG Xufeng
The Sanjiangyuan National Park is located in the hinterland of the Qinghai Tibet Plateau, the third pole of the Earth. It consists of the Yangtze River Source Park, the Yellow River Source Park, and the Lancang River Source Park, with a total area of 123100 square kilometers. The remote sensing snow cover days data product of Sanjiangyuan National Park is based on the daily cloudless snow cover area of 500 meters in China from 2000 to 2020. It is calculated based on the sum of the number of snow cover days observed in a hydrological year, with the hydrological year from September 1 to August 31 of the following year. The range of snow days is 0-365 days or 366 days, with an invalid value of -1. The data format is TIFF, the data projection is WGS84 projection, and the resolution is 500m.
HAO Xiaohua
Meteorological data is generally divided into three categories: short-term (i.e. daily), medium-term, and long-term. Among them, daily meteorological data is the most commonly used data, mainly including temperature, precipitation, precipitation type, relative humidity, wind speed, and direction. They are the basic data for meteorological surveys and research, and are an important basis for meteorological forecasting, climate change monitoring, and precipitation forecasting. Daily meteorological data from national standard meteorological stations in Sanjiangyuan and adjacent areas from 1981 to 2015, including eight variables, namely station pressure, temperature, relative humidity, precipitation, evaporation, wind direction, wind speed, sunlight, and 0cm ground temperature. The data is in. txt format.
WANG Xufeng WANG Xufeng
This data set contains sequence data of the number variation of livestock in the major cities and counties of the Tibetan Plateau from 1970 to 2006. It is used to study the social and economic changes of the Tibetan Plateau. The table has ten fields. Field 1: Year Interpretation: Year of the data Field 2: Province Interpretation: The province from which the data were obtained Field 3: City/Prefecture Interpretation: The city or prefecture from which the data were obtained Field 4: County Interpretation: The name of the county Field 5: Large livestock (10,000) Interpretation: The number of large livestock such as cattle, horses, mules, donkeys, and camels. Field 6: Cattle herd (10,000) Interpretation: Number of cattle Field 7: Equine animals(10,000) Interpretation: The number of equine animals such as horses, mules and donkeys. Field 8: Horses (10,000) Interpretation: The number of horses Field 9: Sheep (10,000) Interpretation: The number of sheep Field 10: Data Sources Interpretation: Source of Data The data come from the statistical yearbook and county annals. Some are listed as follows. [1] Gansu Yearbook Editorial Committee. Gansu Yearbook [J]. Beijing: China Statistics Press, 1984, 1988-2009 [2] Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook [J]. Beijing: China Statistics Press, 1988-2009 [3] Statistical Bureau of Sichuan Province, Sichuan Survey Team. Sichuan Statistical Yearbook [J]. Beijing: China Statistics Press, 1987-1991, 1996-2009 [4] Statistical Bureau of Xinjiang Uighur Autonomous Region . Xinjiang Statistical Yearbook [J]. Beijing: China Statistics Press, 1989-1996, 1998-2009 [5] Statistical Bureau of Tibetan Autonomous Region. Tibet Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-2009 [6] Statistical Bureau of Qinghai Province. Qinghai Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-1994, 1996-2008. [7] County Annals Editorial Committee of Huzhu Tu Autonomous County. County Annals of Huzhu Tu Autonomous County [J]. Qinghai: Qinghai People's Publishing House, 1993 [8] Haiyan County Annals Editorial Committee. Haiyan County Annals[J]. Gansu: Gansu Cultural Publishing House, 1994 [9] Menyuan County Annals Editorial Committee. Menyuan County Annals[J]. Gansu: Gansu People's Publishing House, 1993 [10] Guinan County Annals Editorial Committee. Guinan County Annals [J]. Shanxi: Shanxi People's Publishing House, 1996 [11] Guide County Annals Editorial Committee. Guide County Annals[J]. Shanxi: Shanxi People's Publishing House, 1995 [12] Jianzha County Annals Editorial Committee. Jianzha County Annals [J]. Gansu: Gansu People's Publishing House, 2003 [13] Dari County Annals Editorial Committee. Dari County Annals [J]. Shanxi: Shanxi People's Publishing House, 1993 [14] Golmud City Annals Editorial Committee. Golmud City Annals [J]. Beijing: Fangzhi Publishing House, 2005 [15] Delingha City Annals Editorial Committee. Delingha City Annals [J]. Beijing: Fangzhi Publishing House, 2004 [16] Tianjun County Annals Editorial Committee. Tianjun County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [17] Naidong County Annals Editorial Committee. Naidong County Annals [J]. Beijing: China Tibetology Press, 2006 [18] Gulang County Annals Editorial Committee. Gulang County Annals [J]. Gansu: Gansu People's Publishing House, 1996 [19] County Annals Editorial Committee of Akesai Kazak Autonomous County. County Annals of Akesai Kazakh Autonomous County [J]. Gansu: Gansu People's Publishing House, 1993 [20] Minxian County Annals Editorial Committee. Minxian County Annals [J]. Gansu: Gansu People's Publishing House, 1995 [21] Dangchang County Annals Editorial Committee. Dangchang County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [22] Dangchang County Annals Editorial Committee. Dangchang County Annals(Sequel) (1985-2005) [J]. Gansu: Gansu Cultural Publishing House, 2006 [23] Wenxian County Annals Editorial Committee. Wenxian County Annals[J]. Gansu: Gansu Cultural Publishing House, 1997 [24] Kangle County Annals Editorial Committee. Kangle County Annals [J]. Shanghai: Sanlian Bookstore. 1995 [25] County Annals Editorial Committee of Jishishan (Baoan, Dongxiang, Sala) Autonomous County. County Annals of Jishishan (Baoan, Dongxiang, Sala) Autonomous County[J], Gansu: Gansu Cultural Publishing House, 1998 [26] Luqu County Annals Editorial Committee. Luqu County Annals [J]. Gansu: Gansu People's Publishing House, 2006 [27] Zhouqu County Annals Editorial Committee. Zhouqu County Annals [J]. Shanghai: Sanlian Bookstore. 1996 [28] Xiahe County Annals Editorial Committee. Xiahe County Annals [J]. Gansu: Gansu Cultural Publishing House, 1999 [29] Zhuoni County Annals Editorial Committee. Zhuoni County Annals [J]. Gansu: Gansu Nationality Publishing House, 1994 [30] Diebu County Annals Editorial Committee. Diebu County Annals [J]. Gansu: Lanzhou University Press, 1998 [31] Pengxian County Annals Editorial Committee. Pengxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1989 [32] Guanxian County Annals Editorial Committee. Guanxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1991 [33] Wenjiang County Annals Editorial Committee. Wenjiang County Annals [J]. Sichuan: Sichuan People's Publishing House, 1990 [34] Shifang County Annals Editorial Committee. Shifang County Annals [J]. Sichuan: Sichuan University Press, 1988 [35] Tianquan County Annals Editorial Committee. Tianquan County Annals [J]. Sichuan: Sichuan Science and Technology Press, 1997 [36] Shimian County Annals Editorial Committee. Shimian County Annals [J]. Sichuan: Sichuan Cishu Publishing House, 1999 [37] Lushan County Annals Editorial Committee. Lushan County Annals [J]. Sichuan: Fangzhi Publishing House, 2000 [38] Hongyuan County Annals Editorial Committee. Hongyuan County Annals [J]. Sichuan: Sichuan People's Publishing House, 1996 [39] Wenchuan County Annals Editorial Committee. Wenchuan County Annals [J]. Sichuan: Bayu Shushe, 2007 [40] Derong County Annals Editorial Committee. Derong County Annals [J]. Sichuan: Sichuan University, 2000 [41] Baiyu County Annals Editorial Committee. Baiyu County Annals [J]. Sichuan: Sichuan University Press, 1996 [42] Batang County Annals Editorial Committee. Batang County Annals [J]. Sichuan: Sichuan Nationality Publishing House, 1993 [43] Jiulong County Annals Editorial Committee. Jiulong County Annals(Sequel) (1986-2000) [J]. Sichuan: Sichuan Science and Technology Press, 2007 [44] County Annals Editorial Committee of Derung-Nu Autonomous County Gongshan. County Annals of Derung-Nu Autonomous County Gongshan [J]. Beijing: Nationality Publishing House, 2006 [45] Lushui County Annals Editorial Committee. Lushui County Annals [J]. Yunnan: Yunnan People's Publishing House, 1995 [46] Deqin County Annals Editorial Committee. Deqin County Annals [J]. Yunnan: Yunnan Nationality Publishing House, 1997 [47] Yutian County Annals Editorial Committee. Yutian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [48] Cele County Annals Editorial Committee. Cele County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2005 [49] Hetian County Annals Editorial Committee. Hetian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [50] Qiemo County Local Chronicles Editorial Committee. Qiemo County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [51] Shache County Annals Editorial Committee. Shache County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [52] Yecheng County Annals Editorial Committee. Yecheng County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1999 [53] Akto County Local Chronicles Editorial Committee. Akto County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [54] Wuqia County Local Chronicles Editorial Committee. Wuqia County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1995
National Bureau of Statics of China
The data include the night light data of Tibetan Plateau with a spatial resolution of 1km*1km, a temporal resolution of 5 years and a time coverage of 2000, 2005 and 2010.The data came from Version 4 dmsp-ols products. DMSP/OLS sensors took a unique approach to collect radiation signals generated by night lights and firelight.DMSP/OLS sensors, working at night, can detect low-intensity lights emitted by urban lights, even small-scale residential areas and traffic flows, and distinguish them from dark rural backgrounds.Therefore, DMSP/OLS nighttime light images can be used as a representation of human activities and become a good data source for human activity monitoring and research.
FANG Huajun
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau
FANG Huajun
This dataset contains daily 0.01°×0.01° land surface soil moisture products in the Qinghai-Tibet Plateau in 2005, 2010, 2015, 2017, and 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “SMAP Time-Expanded 0.25°×0.25° Land Surface Soil Moisture Dataset in the Qinghai-Tibet Plateau (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou, and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
SU Bo
The meteorological elements distribution map of the plateau, which is based on the data from the Tibetan Plateau National Weather Station, was generated by PRISM model interpolation. It includes temperature and precipitation. Monthly average temperature distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 Monthly average temperature distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, Precipitation distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 Precipitation distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): p1991-20_1.e00,p1991-20_2.e00,p1991-20_3.e00,p1991-20_4.e00,p1991-20_5.e00, p1991-20_6.e00,p1991-20_7.e00,p1991-20_8.e00,p1991-20_9.e00,p1991-20_10.e00, p1991-20_11.e00,p1991-20_12.e00, The temporal coverage of the data is from 1961 to 1990 and from 1991 to 2020. The spatial coverage of the data is 73°~104.95° east longitude, 26.5°~44.95° north latitude, and the spatial resolution is 0.05 degrees×0.05 degrees (longitude×latitude), and it uses the geodetic coordinate projection. Name interpretation: Monthly average temperature: The average value of daily average temperature in a month. Monthly precipitation: The total precipitation in a month. Dimensions: The file format of the data is E00, and the DN value is the average value of monthly average temperature (×0.01°C) and the average monthly precipitation (×0.01 mm) from January to December. Data type: integer Data accuracy: 0.05 degrees × 0.05 degrees (longitude × latitude). The original sources of these data are two data sets of 1) monthly mean temperature and monthly precipitation observation data from 128 stations on the Tibetan Plateau and the surrounding areas from the establishing times of the stations to 2000 and 2) HadRM3 regional climate scenario simulation data of 50×50 km grids on the Tibetan Plateau, that is, the monthly average temperature and monthly precipitation simulation values from 1991 to 2020. From 1961 to 1990, the PRISM (Parameter elevation Regressions on Independent Slopes Model) interpolation method was used to generate grid data, and the interpolation model was adjusted and verified based on the site data. From 1991 to 2020, the regional climate scenario simulation data were downscaled to generate grid data by the terrain trend surface interpolation method. Part of the source data came from the results of the GCM model simulation; the GCM model used the Hadley Centre climate model HadCM2-SUL. a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. The spatial interpolation of meteorological data adopted the PRISM (Parameter-elevation Regressions on Independent Slopes Model) method: Daly, C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. Due to the difficult observational conditions in the plateau area and the lack of basic research data, there were deletions of meteorological data in some areas. After adjustment and verification, the accuracy of the data was only good enough to be used as a reference for macroscale climate research. The average relative error rate of the monthly average temperature distribution of the Tibetan Plateau from 1961 to 1990 was 8.9%, and that from 1991 to 2020 was 9.7%. The average relative error rate of precipitation data on the Tibetan Plateau from 1961 to 1990 was 20.9%, and that from 1991 to 2020 was 22.7%. The area of missing data was interpolated, and the values of obvious errors were corrected.
ZHOU Caiping
The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.
DONG Qianjin, DONG Lingxiao
The basic data set of remote sensing for ecological assets assessment of the Qinghai-Tibet Plateau includes the annual Fraction Vegetation Coverage (FVC), Net Primary Productivity (NPP) and Leaf Area Index (LAI) of the Qinghai-Tibet Plateau since 2000, and other ecological parameters based on remote sensing inversion. The FVC data are mainly developed from MODIS NDVI data. Based on pixel dichotomy model, the vegetation coverage model is developed by using multi-scale remote sensing images, combining with high precision remote sensing parameters such as vegetation community type and distribution characteristics, and the mixed pixel decomposition method is used to construct the vegetation coverage model. All data could be used only after the permission of the data distributor.
LIU Wenjun
1)The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015, and the grid resolution is 300m. 2) China soil erosion prediction model (CSLE) was used to calculate the soil erosion amount of more than 4,000 investigation units on the Qinghai-Tibet Plateau. Soil erosion was interpolated according to land use on Qinghai-Tibet Plateau. According to the soil erosion classification standard, the soil erosion intensity map of Qinghai-Tibet Plateau was obtained. 3) By comparing the differences of three-stage soil erosion intensity data, it conforms to the actual change law and the data quality is good. 4) The data of soil erosion intensity are of great significance to the study of soil erosion in the Qinghai-Tibet Plateau and the sustainable development of local ecosystems. In the attribute table, "Value" represents the erosion intensity level, from 1 to 6, the value represents slight, mild, moderate, intense, extremely intense and severe. "BL" represents the percentage of echa erosion intensity in the total area.
ZHANG Wenbo
This dataset is a pixel-based maximum fractional vegetation cover map within the Yellow River source region on the Qinghai-Tibet Plateau, with an area of about 44,000 square kilometers. Based on the time series images acquired from MODIS with a resolution of 250 m and Landsat-8 with a resolution of 30 m in 2015 during the vegetation growing season, the data are derived using dimidiate pixel model and time interpolation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data is in the format of grid.
WANG Guangjun
This data set contains the statistical information of natural disasters in Qinghai Tibet Plateau in the past 50 years (1950-2002), including drought, snow disaster, frost disaster, hail, flood, wind disaster, lightning disaster, cold wave and strong cooling, low temperature and freezing damage, gale sandstorm, insect disaster, rodent damage and other meteorological disasters. Qinghai and Tibet are the main parts of the Qinghai Tibet Plateau. The Qinghai Tibet Plateau is one of the Centers for the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the international scientific and technological circles to study climate and ecological environment changes. Its complex terrain conditions, high altitude and severe climate conditions determine that the ecological environment is very fragile, It has become the most frequent area of natural disasters in China. The data were extracted from "China Meteorological Disaster Canon · Qinghai volume" and "China Meteorological Disaster Canon · Tibet Volume", which were manually input, summarized and proofread.
Statistical Bureau Statistical Bureau
These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.
CHEN Jun
Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.
FANG Huajun, Ranga Myneni
There are two types of aerosol data in the Tibetan Plateau. Aerosol type data products are the results of aerosol type data fusion by using Meera 2 assimilation data and active satellite CALIPSO products through a series of data preprocessing, quality control, statistical analysis and comparative analysis. The key of the algorithm is to judge the CALIPSO aerosol type. According to CALIPSO aerosol types and quality control, and referring to merra 2 aerosol types, the final aerosol type data (12 kinds) and quality control results were obtained. Considering the vertical and spatial distribution of aerosols, it has high spatial resolution (0.625 ° × 0.5 °) and temporal resolution (month). Aerosol optical depth (AOD) is a visible band remote sensing inversion method developed by ourselves, combined with merra-2 model data and NASA's official product mod04. The data coverage time is from 2000 to 2019, with daily temporal resolution and spatial resolution of 0.1 degree. The retrieval method mainly uses the self-developed APRs algorithm to retrieve the aerosol optical depth over the ice and snow. The algorithm takes into account the BRDF characteristics of the ice and snow surface, and is suitable for the inversion of aerosol optical thickness on the ice and snow. The results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the polar AOD.
GUANG Jie, ZHAO Chuanfeng
The data set is a record of glacier distribution in Hoh Xil region, including three tables: the distribution of modern glaciers in various mountain areas in Hoh Xil region, the distribution of modern glaciers in various river basins in Hoh Xil region, and the distribution of modern glaciers in different mountain height segments in Hoh Xil region. Hoh Xil, located in the hinterland of the Qinghai Tibet Plateau, has an average altitude of more than 5000m and a very cold climate. According to the catalogue of China's glaciers and the author's re statistics on the 1 / 100000 topographic map, 437 modern glaciers are developed in the whole region, covering an area of 1552.39 square kilometers, with ice reserves of 162.8349 cubic kilometers, becoming an important source of water supply for many rivers and lakes in the region. Through this data set, we can know more about the distribution of glaciers in this area.
LI Bingyuan
Based on a recently developed inventory of permafrost presence or absence from 1475 in situ observations, we developed and trained a statistical model and used it to compile a high‐resolution (30 arc‐ seconds) permafrost zonation index (PZI) map. The PZI model captures the high spatial variability of permafrost distribution over the QTP because it considers multi- ple controlling variables, including near‐surface air temperature downscaled from re‐ analysis, snow cover days and vegetation cover derived from remote sensing. Our results showed the new PZI map achieved the best performance compared to avail- able existing PZI and traditional categorical maps. Based on more than 1000 in situ measurements, the Cohen's kappa coefficient and overall classification accuracy were 0.62 and 82.5%, respectively. Excluding glaciers and lakes, the area of permafrost regions over the QTP is approximately 1.54 (1.35–1.66) ×106 km2, or 60.7 (54.5– 65.2)% of the exposed land, while area underlain by permafrost is about 1.17 (0.95–1.35) ×106 km2, or 46 (37.3–53.0)%.
CAO Bin CAO Bin
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn