Satellite remote sensing provides an efficient pathway to map inland surface water extent across different spatial and temporal scales. However, how to monitor the surface water distribution and its spatiotemporal variability via combining optical and radar remote sensing datasets still faces substantial challenges. A monthyly surface water data set of China derived from optical and radar remote sensing (2018-2020) is provided. The dataset was generated by Seamless Surface Water Mapping Framework (SSWMF) proposed by Yang et al. (2022). The validity of this dataset was further proved over China with an overall accuracy of 92.39% and Kappa coefficient of 0.83. With seamless surface water monitoring, the changes of surface water area can be potentially used to characterize the drought/flood process and evaluate the natural hazard impact.
YANG Yongmin
The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau
FANG Huajun
Based on Landsat data (kh-9 data in 1976 as auxiliary data), glacial lake data of nearly 40 years (1970s-2018) in the western Nyainqentanglha range were obtained by manual digitization and visual interpretation. The variation characteristics of glacial lake over 0.0036 square kilometers in terms of type, size, elevation and watershed were analyzed in detail. The results show that, between 1976 and 2018, the number of glacial lakes increased by 56% from 192 to 299 and their total area increased by 35% from 6.75 ± 0.13 square kilometers to 9.12 ± 0.13 square kilometers ; the type of glacial lake is changing obviously; the smaller glacial lake is changing faster; the expansion of glacial lake is developing to higher altitude.
LUO Wei, ZHANG Guoqing
In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.
LUO Geping
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
CHEN Xuelong, BOB Su, MA Yaoming
Thematic data on desertification (land desertification, salinization and vegetation degradation) in Central Asia, includes three parts: Distribution Map of Sandy Land in Central Asia, Distribution Map of Salinized Land in Central Asia and Distribution Map of Land Vegetation Degradation in Central Asia. The spatial resolution of the data is 1km, the time resolution is in 2015. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.
XU Wenqiang
The sand drift potential data sets of Central Asia in 2017 is in tif format. It covers five countries in Central Asia, including Uzbekistan, Tajikistan, Kyrgyzstan, Kazakhstan and Turkmenistan. The sand drift potential is absolutely drift potential, that is, the sum of the flux in all directions, regardless of the direction of the potential. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The temporal resolution is month, the spatial resolution is 0.25°, and the time range is 2017. This data set can be used as an important reference data for sand storm disaster assessment.
GAO Xin
Using the Landsat8 OLI images at the summerof 2015, the spectral characteristics of satellite sensors were extracted in the Belt and Road's region. The bands included the band (0.45 - 0.51μm)、band (0.53 - 0.59μm)、band (0.64 - 0.67μm)、band (0.85 - 0.88μm)、band (1.57 - 1.65μm)、band (2.11 - 2.29 μm)、band (10.60 - 11.19 μm)和band (11.50 - 12.51 μm). And the Land cover data of the Belt and Road's region (Version 1.0) (2015) was used to extract the land cover/use at each location. Data includes the format of excel and shp. The data of shp format includes the spatial distribuition and the spectral characteristics of each sampling point.
XU Erqi
Thematic data on desertification in Western Asia, includes two parts: Distribution Map of Sandy Land in Western Asia, Distribution Map of Grassland Degradation in Western Asia. The spatial resolution of the data is 30m. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences, the spatial resolution of data is 30 m. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101. The map of artificial oasis pattern in Amu river basin is based on Landsat TM and ETM image data in 2015. Firstly, with the help of eCognition software, the object-oriented classification is carried out. Secondly, the classification results are checked and corrected manually.
The dataset is the land cover of Qing-Tibet Plateau in 2010. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
The Qinghai Tibet Plateau belongs to the plateau mountain climate. The temperature and its seasonal variation have been one of the hot spots in the global climate change research. The data includes the temperature data of Qinghai Tibet Plateau, with spatial resolution of 1km * 1km, temporal resolution of month and year, and time coverage of 2000, 2005, 2010 and 2015. The data are obtained by Kring interpolation on the data of national weather station in Qinghai Tibet Plateau. The data can be used to analyze the temporal and spatial distribution of air temperature in the Qinghai Tibet Plateau. In addition, the data can also be used to analyze the law of temperature change with time in the Qinghai Tibet Plateau, which is of great significance to the study of the ecological environment of the Qinghai Tibet Plateau.
FANG Huajun
The data set consists of four sub tables, which are remote sensing monitoring of Lake area from 2000 to 2019, total lake water storage based on underwater 3D simulation model, Lake area volume equation based on underwater 3D simulation model, and key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province. The first sub table is the time series Lake area data from 2000 to 2019 from remote sensing image data monitoring. The third sub table stores the area storage capacity equation of the lake based on the underwater three-dimensional simulation model of the lake. The second sub table is the estimation result by combining the time series Lake area data and the area storage capacity equation, Finally, the key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province from 2000 to 2019 are obtained, including simulated water depth, maximum water depth, simulated reference water level and corresponding Lake area of each lake, which are stored in the fourth sub table.
FANG Chun, LU Shanlong, JU Jianting, TANG Hailong
Lakes on the Tibetan Plateau (TP) are an indicator and sentinel of climatic changes. We extended lake area changes on the TP from 2010 to 2021, and provided a long and dense lake observations between the 1970s and 2021. We found that the number of lakes, with area larger than 1 k㎡ , has increased to ~1400 in 2021 from ~1000 in the 1970s. The total area of these lakes decreased between the 1970s and ~1995, and then showed a robust increase, with the exception of a slight decrease in 2015. This expansion of the lakes on the highest plateau in the world is a response to a hydrological cycle intensified by recent climate changes.
ZHANG Guoqing
Greenland digital elevation models (DEMs) are indispensable to fieldwork, ice velocity calculations, and mass change estimations. Previous DEMs have provided reasonable estimations for the entire Greenland, but the time span of applied source data may lead to mass change estimation bias. To provide a DEM with a specific time-stamp, we applied approximately 5.8×108 ICESat-2 observations from November 2018 to November 2019 to generate a new DEM, including the ice sheet and glaciers in peripheral Greenland. A spatiotemporal model fit process was performed at 500 m, 1,2, and 5 km grid cells separately, and the final DEM was posted at the modal resolution of 500 m. A total of 98% of the grids were obtained by the model fit, and the remaining DEM gaps were estimated via the ordinary Kriging interpolation method. Compared with IceBridge mission data acquired by the Airborne Topographic Mapper (ATM) Lidar system, the ICESat-2 DEM was estimated to have a maximum median difference of -0.48 m. The performance of the grids obtained by model fit and interpolation was similar, which both agreed well with the IceBridge data. DEM uncertainty rises in regions of low latitude and high slope or roughness. Furthermore, the ICESat-2 DEM showed significant accuracy improvements compared with other altimeter-derived DEMs, and the accuracy was comparable to those derived from stereo-photogrammetry and interferometry. Overall, the ICESat-2 DEM showed excellent accuracy stability under various topographic conditions, which can provide a specific time-stamped DEM with high accuracy that will be useful to study Greenland elevation and mass balance changes.
FAN Yubin, KE Changqing, SHEN Xiaoyi
The distribution of lakes in space and its change over time are closely related to agricultural, environmental and ecological issues, and are critical factors for human socio-economic development. In the past decades, satellite based remote sensing has been developed rapidly to provide essential data sources for monitoring temporal lakes dynamics with its advantage of rapidness, wide coverage, and lower cost. This dataset was produced from Landsat images using the automated water detection method (Feng et al, 2015). We collected 96,278 Landsat images (about 25 terabytes) that acquired since 2000 with less than 80% cloud contamination in the arid region of central Asia and Tibetan Plateau. Water is detected in each of the image and then aggregated to monthly temporal resolution by taking advantage of the high-performance processing capability and large data storage provided by Global Land Cover Facility (GLCF) at University of Maryland. The results are validated systematically and quantitatively using manually interpreted dataset, which consists of a set of locations collected by a stratified random sampling strategy to effectively represent different spatial-temporal distributions in the region. The validation suggests high accuracy of the results (overall accuracy: 99.45(±0.59); user accuracy: 85.37%±(3.74); produce accuracy: 98.17(±1.05)).
FENG Min, CHE Xianghong
Ecological carrying capacity refers to the maximum population scale with a certain level of social and economic development that can be sustainably carried by the ecosystem without damaging the production capacity and functional integrity of the ecosystem, per person/square kilometer. Spatial distribution data of ecological carrying capacity were calculated based on NPP data simulated by VPM model and FAO production and trade data of agriculture, forestry and animal husbandry. Based on NPP data and combined with the land use data of cci-ci and biomass ratio parameters of various ecosystems, ANPP data was obtained to serve as ecological supply quantity. Based on agricultural, forestry and animal husbandry production and trade data and combined with population data, per capita ecological consumption standards of countries along the One Belt And One Road line were obtained, and then national scale data space was rasterized. The spatial rasterized ecological bearing data are obtained by dividing the ecological supply data with the per capita ecological consumption standard.
YAN Huiming
The SRTM sensor has two bands, namely C-band and X-band. The SRTM we are using now comes from the C-band. The publicly released SRTM digital elevation products include DEM data at three different resolutions: * SRTM1 covers only the continental United States, with a spatial resolution of 1s; * SRTM3 data covers the world with a spatial resolution of 3s. This is the most widely used dataset. The elevation reference of SRTM3 is the geoid of EGM96 and the horizontal reference is WGS84. The nominal absolute elevation accuracy is ± 16m, and the absolute plane accuracy is ± 20m. * SRTM30 data also covers the world, with a resolution of 30s. There are multiple versions of SRTM data. The early SRTM data was completed by NASA's "JPL" (Jet Propulsion Laboratory) ground data processing system (GDPS). The data is called SRTM3- 1. The National Geospatial Intelligence Agency has further processed the data, and the lack of data has been significantly improved. The data is called SRTM3-2. This dataset is mainly the fourth version of SRTM terrain data obtained by CIAT (International Center for Tropical Agriculture) using a new interpolation algorithm. This method better fills the SRTM 90 data hole. The interpolation algorithm comes from Reuter et al. (2007). The data of SRTM is organized as follows: every 5 latitude and longitude grids is divided into a file, which are divided into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees). The file naming rule is srtm_XX_YY.zip, where XX indicates the number of columns (01-72), and YY indicates the number of rows (01-24). The resolution of the data is 90 m. Data use: SRTM data uses a 16-bit value to represent the elevation value (-/ + / 32767 meters), the maximum positive elevation is 9000 meters, and the negative elevation (12,000 meters below sea level). -32767 standard for empty data.
CGIAR-CSI
This data set includes land cover classification products of 30 meters in Qilian mountain area from 1985 to 2019. Firstly, the product uses Landsat-8/OLI to construct the 2015 time series data. According to the different NDVI time series curves of various ground features, the knowledge of different features is summarized, the rules are set to extract different features, and the land cover classification map in 2015 is obtained. The classification system refers to IGBP classification system and from_ LC classification system can be divided into 10 categories: cultivated land, woodland, grassland, shrub, wetland, water body, impervious surface, bare land, glacier and snow. According to the accuracy evaluation of Google Earth HD images and field survey data, the overall accuracy of land cover classification products in 2015 was as high as 92.19%. Based on the land cover classification products in 2015, based on the Landsat series data and strong geodetic data processing ability of Google Earth engine platform, the land cover classification products from 1985 to 2019 are produced by using the idea and method of change detection. By comparing the classification products, it is concluded that the land cover classification products based on Google Earth engine platform have good consistency with the classification products based on time series method. In short, the land cover data set in the core area of Qilian Mountain has high overall accuracy, and the method based on Google Earth engine platform sample training can expand the existing classification products in time and space, and can reflect more land cover type change information in a long time series.
YANG Aixia, ZHONG Bo, JUE Kunsheng, WU Junjun
This data set includes the distribution products of 30 m cultivated land and construction land in Qilian mountain area from 1985 to 2019. The product comes from the land cover classification products of 30m in Qilian mountain area from 1985 to 2019. NDVI products, light data products, DEM products and SAR data of sentry 1 are used in the production of the products. The total accuracy of the product is better than 85%. Among them, the peoducts from 1985-2015 have a 5 year- time resolution, and the other products have a 1 year - time resolution.
YANG Aixia, ZHONG Bo, JUE Kunsheng, WU Junjun
The multi-decadal lake number and area changes in China during 1960s–2020 are derived from historical topographic maps and >42151 Landsat satellite images, including lakes as fine as ≥1 km^2 in size for the past 60 years (1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020). From the 1960s to 2020, the total number of lakes (≥ 1 km ^ 2) in China increased from 2127 to 2621, and the area expanded from 68537 km ^ 2 to 82302 km ^ 2.
ZHANG Guoqing
This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.
Food and Agriculture Organization of the United Nations(FAO)
The SMC dataset contains land soil moisture data for Chinese land spanning from 2002 to 2018, the unit is m3/m3, in monthly temporal and 0.05° spatial resolution. More specifically, it is produced by from three passive microwave remote sensing products: the Japan Aerospace Exploration Agency (JAXA)’s Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2) Level 3 soil moisture data, and SMOS product that was developed by the Institut National de la Recherche Agronomique) (INRA) and Centre d’Etudes Spatiales de la BIOsphère (CESBIO) soil moisture data. To overcome the deficiencies of passive microwave soil moisture products with low resolution, we construct a spatially weighted decomposition (SWD) using TVDI that calculated by Moderate Resolution Imaging Spectroradiometer (MODIS) data, including the land surface temperature (LST) MYD11C3 data and the normalized difference vegetation index (NDVI) MYD13C2 data. Overall, the downscaled soil moisture (SM) products were consistent with the in-situ measurements (R>0.78) and exhibited a low root mean square error (ubRMSE < 0.05 m3/m3), which indicates good accuracy throughout the time series. The dataset can be widely used to significantly improve hydrologic and drought monitoring and can serve as an important input for ecological and other geophysical models.
MAO Kebiao
This data set includes the monthly synthesis of 30m*30m surface LAI products in Qilian mountain area in 2019. Max value composition (MVC) method was used to synthesize monthly NPP products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun, ZHONG Bo
This data set is the human activity data in the key areas of Qilian Mountain in 2020. Based on the data of mining, illegal house renovation, new roads, land leveling and ecological restoration in the key areas of Qilian Mountain, the Gaofen-1, Gaofen-2 and ZY3 high-resolution remote sensing images to compare the changes before and after statistical analysis. in the key areas of Qilian Mountain, the changes of land types are investigated and verified block by block; in the areas with suspicious maps, re-interpretation and verification; in the areas with unreflecting images, field verification is carried out to collect relevant data, check and correct the location. At the same time, it further checks the attribute information of mining, illegal house renovation, new roads, land leveling and ecological restoration in the key areas of Qilian Mountain in 2020, and unifies the input and editing of the patches and their attributes, forming the data set of 2m spatial resolution human activities in the key areas of Qilian Mountain in 2020, realizing the current situation and timeliness of ecological management in the key areas of Qilian Mountain, and providing data support for the monitoring of human activities in the key areas of Qilian Mountain in 2020.
QI Yuan, ZHANG Jinlong, YUAN Jing, ZHOU Shengming, WANG Hongwei
This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2019. Max value composition (MVC) method was used to synthesize monthly NDVI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun, ZHONG Bo
This data set includes the monthly synthesis of 30m LAI products in Qilian mountain area in 2020. Max value composition (MVC) method was used to synthesize monthly LAI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun, ZHONG Bo
This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2020. Max value composition (MVC) method was used to synthesize monthly FVC products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.
WU Junjun, ZHONG Bo
The SSTG dataset is a global sea surface temperature data during the period of 2002-2019, in Celsius, in monthly temporal and 0.041° spatial resolution. It is produced by combing daily in situ SST data and daily satellite SST retrieval data from two infrared (MODIS and AVHRR) and three passive microwave (AMSR-E, AMSR2, Windsat) radiometers after calibration by using a temperature depth and observation time correction model. The accuracy assessments indicate that the reconstructed dataset exhibits significant improvements and can be used for mesoscale ocean phenomenon analyses.
MAO Kebiao
The data set is based on the reflectance of MODIS channels and the observation data of SIF to establish the neural network model, so as to obtain the SIF data with high spatial and temporal resolution, which is often used as a reference for primary productivity. The data is from Zhang et al. (2018), and the specific algorithm is shown in the article. The source data range is global, and the Qinghai Tibet plateau region is selected in this data set. This data integrates the original 4-day time scale data into the monthly data. The processing method is to take the maximum value of the month, so as to achieve the effect of removing noise as much as possible. This data set is often used to evaluate the temporal and spatial patterns of vegetation greenness and primary productivity, which has practical significance and theoretical value.
ZHANG Yao
In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
The fraction snow cover (FSC) is the ratio of the snow cover area SCA to the pixel space. The data set covers the Arctic region (35 ° to 90 ° north latitude). Using Google Earth engine platform, the initial data is the global surface reflectance product with a resolution of 1000m with mod09ga, and the data preparation time is from February 24, 2000 to November 18, 2019. The methods are as follows: in the training sample area, the reference data set of FSC is prepared by using Landsat 8 surface reflectance data and snomap algorithm, and the data set is taken as the true value of FSC in the training sample area, so as to establish the linear regression model between FSC in the training sample area and NDSI based on MODIS surface reflectance products. Using this model, MODIS global surface reflectance product is used as input to prepare snow area ratio time series data in the Arctic region. The data set can provide quantitative information of snow distribution for regional climate simulation and hydrological model.
MA Yuan, LI Hongyi
Data content: evapotranspiration data set of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: Based on IDL platform, SEBS algorithm and MODIS data of NASA were used to calculate the evapotranspiration results of the Aral Sea basin from 2015 to 2018. Data quality: spatial resolution is 1000m × 1000m, temporal resolution is 8 days. Results and prospects of data application: in the context of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics, and can also be combined with other vegetation data and ecological data to analyze land degradation.
LIU Tie
Data content: normalized vegetation index data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: the first band of mod13a2 product was extracted from NASA medium resolution imaging spectrometer as leaf area index data and multiplied by the scale factor of 0.0001. Data quality: the spatial resolution is 1000m × 1000m, the temporal resolution is 8 days, and the value of each pixel is the average value of eight days' normalized vegetation index. Data application results: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics, and can also be combined with other vegetation data to analyze the regional distribution of a certain vegetation type.
LIU Tie
Data content: data set of planting structure in the Aral Sea Basin in 2019. Data sources and processing methods: 2019 is divided into three time periods, and the sentry-2 data with the least cloud cover and the highest quality in each time period is spliced into a complete map to obtain the remote sensing image of sentry-2 in the third phase of the Aral Sea basin. The NDVI values of the three images are calculated, and then combined with the cultivated land data and field sampling data, the random forest algorithm is used to classify them, and finally the planting structure type of each plot is obtained. Data quality: spatial resolution is 10m × 10m, temporal resolution is year, kappa coefficient is 0.8. Data application results: it can be used for crop yield estimation and water resource utilization efficiency calculation.
LIU Tie
Data content: soil moisture data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: from the National Aeronautics and Space Administration of the United States, the daily soil moisture data are added to get the sum of eight days of soil, and then divided by the number of days to get the average value of eight days of rainfall. Data quality: the spatial resolution is 0.25 ° x 0.25 ° and the temporal resolution is 8 days. The value of each pixel is the average value of soil moisture in 8 days. Results and prospects of data application: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics, and can also be combined with other meteorological data to analyze the regional distribution of a certain vegetation type.
LIU Tie
The data of greenhouse land is based on Google Earth image interpretation in Lhasa city, 2018, with a spatial resolution of 0.52 meters. Most of the greenhouses in Lhasa are regular rectangles with high reflectivity, which is easy to identify. In the process of interpretation, the open fields with an area of more than 0.10 hectares and roads with a width of more than 7 meters in the greenhouse area of protected agriculture, as well as the greenhouse covered with black textile were removed, while the small empty fields and ridges between the farmland of protected agriculture were not removed. The accuracy of interpretation is 98%. The data well reflects the spatial pattern characteristics of greenhouse land in Lhasa city.
GONG Dianqing
The gridded desertification risk data of Iranian plateau in 2019 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in Iranian plateau in 2019.
XU Wenqiang
Based on the MODIS satellite remote sensing data, the overall vegetation coverage (VC) of the China-Mongolia-Russia Economic Corridor was calculated. The traditional VC formula selects the normalized difference vegetation index (NDVI) as a variable. For the reduction of deviation caused by soil background and the impacts of the atmosphere, the enhanced vegetation index (EVI) instead of NDVI is adopted in the calculation process of VC data set. The original data is the enhanced vegetation index data in the Terra MODIS Vegetation Index Data Version 6 (MOD13A3) with the resolution of 1 km. The MOD13A3 dataset is of higher quality than the source data because it filters the outliers or missing measurements of the MODIS satellite data. The China-Mongolia-Russia Economic Corridor is an area with high risk of desertification. At present, the development of desertification in the corridor extends along the main road between China and Mongolia, and the desertification is the most serious in densely populated urban areas. The regional desertification information can be extracted effectively from the vegetation coverage data, which will provide ecological and environmental data support for the disaster risk prevention and safe operation of transportation and pipelines.
ZHANG Xueqin
High spatial and temporal resolution remote sensing image plays a very important role in land use change detection, disaster monitoring and bio-geochemical parameter estimation.Currently, Landsat multi-spectral series satellite data (including Landsat TM, ETM+ and OLI multi-spectral bands) is one of the most widely used multi-spectral data.Taking the One Belt And One Road key node area as the research area, and based on the data of Landsat TM/ETM+/OLI series with good quality from 2000 to 2016, python was used to clip the data in the research area with the masks .To solve the partial data missing problem, MODIS imagery on the missing date and Landsat-MODIS data pair of adjacent phases are combined for spatio-temporal fusion to obtain Landsat-like data.Finally, the high spatial and temporal resolution remote sensing images of 34 key node area during 2001 to 2016 lasted for 8 to 16 days was obtained.
YIN Zhixiang, LING Feng
The data set is based on the reflectance of MODIS channels and the observation data of SIF to establish the neural network model, so as to obtain the SIF data with high spatial and temporal resolution, which is often used as a reference for primary productivity. The data is from Zhang et al. (2018), and the specific algorithm is shown in the article. The source data range is global, and the Tibetan plateau region is selected in this data set. This data integrates the original 4-day time scale data into the monthly data. The processing method is to take the maximum value of the month, so as to achieve the effect of removing noise as much as possible. This data set is often used to evaluate the temporal and spatial patterns of vegetation greenness and primary productivity, which has practical significance and theoretical value.
ZHANG Yao
Gross domestic product (GDP) is a monetary measure of the market value of all the final goods and services produced in a period of time, which has been used to determine the economic performance of a whole country or region. According to the collected the published global GDP data of 2015, a downscaling model, named support vector machine regression kriging was established for predicting 100-m GDP in thirty-four key nodes along the Belt and Road. The remote sensed night light data, land cover, vegetation and terrain indices were employed as ancillary variables in downscaling process. To solve the problem of missing data existing in the ancillary datasets, we will apply kriging and function interpolation methods to fill gaps. The aggregation and resampling were used to obtain 1-km and 500-m all ancillary variables, as well as 100-m terrain indices including elevation, slope and aspect. The adopted downscaling model contains trend and residual predictions. The support vector machine regression is used to model the relationship among GDP and its ancillary variables for obtaining GDP trends at fine scale based on scale invariant of the relationship. And then, the kriging interpolation is used to estimate GDP residuals at fine scale. In the downscaling process, the mentioned downscaling model was firstly employed in 1-km and 500-m data for obtaining 500-m GDP predictions; and it was again used in 500-m and 100-m data for achieving 100-m GDP predictions. The 100-m GDP predictions in constant 2011 international US dollars would provide high spatial resolution data for risk assessments.
GE Yong, LING Feng
Vegetation photosynthesis is a key component of carbon cycle in terrestrial ecosystem. Simulating photosynthesis activities on different spatial and temporal scales is helpful to solve the problem of land carbon budget, and it is also an important way to accurately predict the direction of future climate change and an important prerequisite for scientific understanding of the supporting capacity of terrestrial ecosystem for sustainable development of human society. At present, although a variety of algorithms and products for estimating the total primary productivity (GPP) of ecosystems have been relatively mature, there are still great differences and uncertainties in the global GPP products of long time series, especially the trend of their temporal variation. Sunlight induced chlorophyll fluorescence (SIF) remote sensing is a new type of remote sensing technology developed rapidly in recent years. The close relationship between SIF and photosynthetic process makes it an effective probe to indicate the changes of vegetation photosynthesis and a powerful means to monitor GPP. A new vegetation index (Nirv) based on remote sensing data, namely the product of normalized vegetation index (NDVI) and near-infrared reflectance, is highly related to remote sensing SIF products; based on mechanism derivation, model simulation and analysis of remote sensing data, Nirv can be used as an alternative product of SIF to estimate global GPP. Therefore, on the basis of analyzing the feasibility of Nirv as SIF and GPP probe, this data set generates the global high-resolution long-time series GP data from 1982 to 2018 based on the AVHRR data of remote sensing and hundreds of flux stations around the world, and analyzes the temporal and spatial variation trend of global GPP. The resolution is month, 0.05 degree, and the data unit is gcm-2 The annual average global GPP is about 128.3 ± 4.0 PG Cyr − 1, and the root mean square error (RMSE) of the data is 1.95 gcm-2 D-1. The data set can be used to study global climate change and carbon cycle.
WANG Songhan, ZHANG Yongguang
The data set is from February 24, 2000 to December 31, 2004, with a resolution of 0.05 degrees, MODIS data, and the data format is .hdf. It can be opened with HDFView. The data quality is good. The missing dates are as follows: 2000 1 -54 132 219-230 303 2001 111 167-182 2002 079-086 099 105 2003 123 324 351-358 2004 219 349 The number after the year is the nth day of the year Pixel values are as follows: 0: Snow-free land 1-100: Percent snow in cell 111: Night 252: Antarctica 253: Data not mapped 254: Open water (ocean) 255: Fill An example of file naming is as follows: Example: "MOD10C1.A2003121.004.2003142152431.hdf" Where: MOD = MODIS / Terra 2003 = Year of data acquisition 121 = Julian date of data acquisition (day 121) 004 = Version of data type (Version 4) 2003 = Year of production (2003) 142 = Julian date of production (day 142) 152431 = Hour / minute / second of production in GMT (15:24:31) The corner coordinates are: Corner Coordinates: Upper Left (70.0000000, 54.0000000) Lower Left (70.0000000, 3.0000000) Upper Right (138.0000000, 54.0000000) Lower Right (138.0000000, 3.0000000) Among them, Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner. The number of data rows and columns is 1360, 1020 Geographical latitude and longitude coordinates, the specific information is as follows: Coordinate System is: GEOGCS ["Unknown datum based upon the Clarke 1866 ellipsoid", DATUM ["Not specified (based on Clarke 1866 spheroid)", SPHEROID ["Clarke 1866", 6378206.4,294.9786982139006, AUTHORITY ["EPSG", "7008"]]], PRIMEM ["Greenwich", 0], UNIT ["degree", 0.0174532925199433]] Origin = (70.000000000000000, 54.000000000000000)
National Snow and Ice Data Center(NSIDC)
This dataset is based on the long sequence (1981-2013)normalized difference vegetation index product(Version 3) of the latest NOAA Global Inventory Monitoring and Modeling System (GIMMS). First, the NDVI data products were re-sampled from the spatial resolution of 1/12 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.
XU Xiyan
China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009), is derived from the decision tree classification using passive microwave remote sensing SSM / I brightness temperature data. This data set uses the EASE-Grid projection method (equal cut cylindrical projection, standard latitude is ± 30 °), with a spatial resolution of 25.067525km, and provides daily classification results of the surface freeze-thaw state of the main part of mainland China. The data set is stored by year and consists of 23 folders, from 1987 to 2009. Each folder contains the day-to-day surface freeze-thaw classification results for the current year. It is an ASCII file with the naming rule: SSMI-frozenYYYY ***. Txt, where YYYY represents the year and *** represents the Julian date (001 ~ 365 / 366). The freeze-thaw classification result txt file can be opened and viewed directly with a text program, and can also be opened with ArcView + Spatial Analyst extension module or Arcinfo's Asciigrid command. The original frozen and thawed surface data was derived from daily passive microwave data processed by the National Snow and Ice Data Center (NSIDC) since 1987. This data set uses EASE-Grid (equivalent area expandable earth grid) as a standard format . China's surface freeze-thaw long-term sequence data set-The decision tree algorithm (1987-2009) attributes consist of the spatial-temporal resolution, projection information, and data format of the data set. Spatio-temporal resolution: the time resolution is day by day, the spatial resolution is 25.067525km, the longitude range is 60 ° ~ 140 ° E, and the latitude is 15 ° ~ 55 ° N. Projection information: Global equal-area cylindrical EASE-Grid projection. For more information about EASE-Grid projection, see the description of this projection in data preparation. Data format: The data set consists of 23 folders from 1987 to 2009. Each folder contains the results of the day-to-day surface freeze-thaw classification of the year, and is stored as a txt file on a daily basis. File naming rules: For example, SMI-frozen1994001.txt represents the surface freeze-thaw classification results on the first day of 1994. The ASCII file of the data set is composed of a header file and a body content. The header file consists of 6 lines of description information such as the number of rows, the number of columns, the coordinates of the lower left point of the x-axis, the coordinates of the lower left point of the y-axis, the grid size, and the value of the data-less area. Array, with columns as the priority. The values are integers, from 1 to 4, 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. Because the space described by all ASCII files in this data set is nationwide, the header files of these files are unchanged. The header files are extracted as follows (where xllcenter, yllcenter and cellsize are in m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 All ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the header file, the main content is a numerical representation of the surface freeze-thaw state: 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. If you want to display it with an icon, we recommend using ArcView + 3D or Spatial Analyst extension module to read it. During the reading process, a grid format file will be generated. The displayed grid file is the graphic representation of the ASCII code file. Reading method: [1] Add 3D or Spatial Analyst extension module in ArcView software, and then create a new View; [2] Activate View, click the File menu, select the Import Data Source option, the Import Data Source selection box pops up, select ASCII Raster in Select import file type: in this box, and a dialog box for selecting the source ASCII file automatically pops up Find any ASCII file in the data set and press OK; [3] Type the name of the Grid file in the Output Grid dialog box (a meaningful file name is recommended for later viewing), and click the path where the Grid file is stored, press Ok again, and then press Yes (to select an integer) Data), Yes (call the generated grid file into the current view). The generated file can be edited according to the Grid file standard. This completes the process of displaying the ASCII file as a Grid file. [4] During batch processing, you can use ARCINFO's ASCIIGRID command to write an AML file, and then use the Run command to complete in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
LI Xin
Based on the night light data from remote sensing, the research group used the method of Elvidge in 2009 and 2012 to reverse the incidence of poverty in the countries along the belt and the road. This data is comparable with Gini coefficient published by the World Bank and has the following four prominent advantages: (1) Computing units can be adjusted according to administrative boundaries, reflecting poverty disparities on the sub-regional scale of large countries that are difficult to achieve using statistic data; (2) The spatial Gini coefficient estimated based on night light data is less affected by subjective factors such as survey process, and is comparatively small. Objectively, and the comparability between countries is strong, which overcomes the difficult problem of unification between statistical calibers; (3) The survey and summary cycle limits the update speed at national and large sub-regional scales, while the method based on night light data estimation is convenient to update. (4) Night light data have many years of continuous interannual data from 1992 to 2017, which overcomes the difficulty of obtaining long time series indicators of poverty, such as the gap between the rich and the poor. In view of the above four outstanding advantages, the set of data can better support the research work and provide scientific data for finding out the basic situation of poverty along the "The Belt and the Road".
ZHANG Qian
It includes monthly data of precipitation, evaporation, water reserve change and soil water change of Tarim River. Precipitation data comes from ECMWF. Evaporation data is calculated by energy model based on Penman formula, water reserve data is retrieved by grace gravity satellite data, GLDAS data is obtained by land surface process model simulation of Noah in the United States, and NDVI data is from MODIS data products. The resolution of precipitation and evaporation is 0.5 ° * 0.5 °, and the resolution of water storage and soil water change data is 1 ° * 1 °. The data provide reference for water resource management and decision-making. Vegetation data can provide basic data for ecological change assessment.
XU Min
The data set is the average wind speed of the Central Asia including three temperate deserts, the Karakum, Kyzylkum and Muyunkun Deserts, and one of the world's largest arid zones. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The data is in tif format. The space and time resolutions are 0.25° and 3 hours respectively. The time is from 01, January, 2017 to 31, December, 2017. The data set uses the the Geodetic coordinate system. We can use the data to calculate the sand flux. It can be used for the investigation of the Desert oil and gas field, and oasis cities.
GAO Xin
Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CHU Duo
The dataset is the land cover of Qing-Tibet Plateau in 2014. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn