Wind speed data is widely used in many sciences, management, and policy fields to assess renewable energy potential, address wind hazards, investigate biological phenomena, and explore climate change/variability, among other applications. The challenge is obtaining complete and accurate wind datasets, as observations are limited in distribution. Global-scale weather stations suffer from spatial and temporal discontinuities that limit their utility. While reanalysis products and climate model simulations achieve data continuity, they often fail to reproduce significant wind speed trends because few of them assimilate in-situ wind observations on land. Data interpolation helps fill gaps, but the high variability of wind speed data, combined with a low distribution of observations worldwide, prevents standard statistical interpolation methods such as kriging or principal component analysis from being accurate for areas with sparse data. As a result, wind speed data has been the bottleneck in related studies. Here, based on the partial convolutional neural network, we reconstructed the global near-surface wind speed data during 1973-2021 by assimilating simulation outputs from 34 climate models and the HadISD dataset, which the Met Office Hadley Center creates. Our dataset has a spatial resolution of 1.25°×2.5° and containers observed wind speed trends.
ZHOU Lihong , ZENG Zhenzhong , JIANG Xin
This dataset is the biome change data of the Tibetan Plateau since the last glacial maximum which was reconstructed by using a new method. Firstly, a random forest algorithm was applied to establish a pollen-biome classification model for reconstructing past vegetation changes of the Tibetan Plateau, and 1802 modern pollen assemblages from 17 vegetation zones in and around the Tibetan Plateau were used as the training set for the model development. The random forest model showed a reliable performance (accuracy > 76%) in predicting modern biomes from modern pollen assemblages based on a comparison with the observed biomes. Moreover, the random forest model had a significantly higher accuracy than the traditional biomization method. Then, the newly established random forest model is applied to the paleovegetation reconstruction of 51 fossil pollen sequences of the Tibetan Plateau. New age-depth models were developed for these fossil pollen records using the Bayesian method, and all fossil pollen records were linearly interpolated to 500-year time slices. Finally, the spatiotemporal changes of biomes on the Tibetan plateau over the past 22,000 years at an interval of 500 years were reconstructed by using the random forest model. This dataset can provide evidence for understanding the past variation of alpine vegetation and its mechanism; provide the basis for studying the impact of past climate change on vegetation on the Tibetan Plateau; and provide boundary conditions for climate simulation.
QIN Feng , ZHAO Yan, CAO Xianyong
By archaeological investigation and excavation in the Tibet Plateau and neighbouring areas, we discovered Xichengyi site, Jinchankou site, Shannashuzha site, Jiangxifen site, Zongri site, Bangga site and so on. In this dataset, there are some basic informations about these sites, such as location, longitude, latitude, altitude, material culture and so on. On this Basis, we identified and analysed stone artifacts, animal remains, plant fossil, sedimentary sample, and obtained a batch of dating data of radiocarbon dating; pollen data; identification and isotopic composition and quality indicators of animal remains and plant fossil. At the same time, the relevant animal and plant remains and isotopes in the Tibet Plateau and neighbouring areas are sorted out. Based on natural geographical factors and sites in different periods, the method of realizing cumulative connection between nodes under the control of the lowest cost uses GIS(R language) tool to carry out spatial numerical calculation, and the result is used as the communication route in prehistoric times (Neolithic-bronze age). The shape of the route developed from the northeast-east-southeast-southwest edge of Neolithic Age in crescent shape to the trend of network development from the edge to the hinterland of Bronze Age, which is a manifestation of the gradual evolution from the exchange of plateau edge to the exchange of edge-hinterland, which is constantly strengthened. A total of 49 dung samples of grazing livestock (30 yak dung samples, 11 horse dung samples and 8 sheep dung samples) were collected in the alpine meadow area of the eastern Qinghai-Tibet Plateau, and the pollen analysis of dung samples was carried out on the basis of regional vegetation investigation. This dataset provide important basic data for understanding when and how human lived in the Tibet Plateau and neighbouring areas during the Neolithic Age and the Bronze age.
DONG Guanghui , HOU Guangliang, YANG Xiaoyan
Since the first Industrial Revolution, human activity has profoundly affected all spheres of the earth, and this influence will continue to expand and intensify. As an ecosystem unit with global significance, the Qinghai-Tibet Plateau (QTP) is also an important ecological security barrier in China, playing a crucial role in soil and water conservation, biodiversity conservation, water conservation and carbon balance. However, in the past 30 years, with the expansion of the scope and rapid growth of the intensity of human activities on the QTP, a series of ecological and environmental issues caused by human activities have become increasingly prominent and seriously affected the ecological functions of the QTP. The comprehensive spatial dataset that records human activity intensity will contribute to a deeper understanding of the intensity and scope of human activities in the region, reveal the law of change of human activities in the context of climate warming, and have important significance for further quantitative identification of the impact of human activities and climate change on the ecosystem, as well as promoting the sustainable development of the region. In this study, the human footprint index method was adopted to evaluate the intensity of human activity on the QTP, which used six types of spatial data as indicators of human activities, including population density, land use, grazing density, night lighting, railway and road. The dataset records indicators of human activity intensity in the seven phases, namely, 1990, 1995, 2000, 2005, 2010, 2015 and 2017. The optimization and adjustment of the human footprint method in this dataset mainly include: (1) Six kinds of data including population density, land use, night lighting, grazing density, road and railway were selected to calculate the intensity of human activities; (2) Adjust the assignment of different land use types; (3) The maximum intensity threshold of population density was set at 50 people/km2, and the logarithmic method was used to assign the value. (4) The cattle and sheep density data were used to characterize the grazing density, and the maximum intensity threshold was set as 1000 sheep units/km2, and the logarithmic method was used to assign the value. (5) The corrected DMSP/OLS night lighting data were used for assigning values; (6) Divide the road into five grades, namely expressway, national road, provincial road, county road and other roads, and assign values respectively; (7) The maximum influence range of railway is set as 3.5km; (8) Using glacier and lake spatial data for quality control . The dataset contains the data from "Duan, Q., & Luo, L. (2020). A dataset of human footprint over the Qinghai-Tibet Plateau during 1990–2015. China Scientific Data, 5(3). https://doi.org/10.11922/csdata.2019.0082.zh", and the newly produced data of 2017. This dataset can provide spatial data for exploring the characteristics and rules of spatial changes of human activities in the Qinghai-Tibet Plateau, and can also provide support for exploring the interaction between human activities and ecological environment in the region. it can play a guiding role in promoting the ecological environment protection and sustainable development of the entire Qinghai-Tibet Plateau.
DUAN Quntao, LUO Lihui
The data sources of this dataset mainly include domestic satellite images such as HJ-1A/B, GF-1/2, ZY-3, and Landsat TM/ETM+/OLI series satellite image data. Using the domestic satellite images supplemented by Google Earth images to generate the component training sample and validation sample data of different geographical divisions. Using Google Earth Engine (GEE) to test and correct the model algorithm parameters. The normalized settlement density index (NSDI) is obtained based on random forest algorithm, Landsat TM/ETM+/OLI series satellite images and auxiliary data. The vector boundary of urban built-up area is obtained by density segmentation method after manual interactive interpretation and correction. The NSDI, vegetation coverage index and vector boundary of the Tibetan Plateau are used to produce the original data of urban impervious surface and urban green space fractions in the Tibetan Plateau. After correction and accuracy evaluation, the datasets of urban impervious surface area and green space fractions in the Tibetan Plateau from 2000 to 2020 are generated. The resolution of the data product is 30 m, and the coordinate system and storage format of the data files are unified. The geographic coordinate system is WGS84, the projected coordinate system is Albers, and the data storage format is GeoTIFF, the data unit is percentage (the value range is 0~10000), and the scale factor is 0.01. In order to quantify the change of urban land cover more accurately, samples from several typical cities are selected to verify the dataset. The specific verification methods and accuracy are shown in the published results. The data can be used to analyze and reveal the impact of land cover change and future scenario simulation on the Tibetan Plateau, to provide a scientific basis for building environmentally livable cities and improving the quality of human settlements on the Tibetan Plateau.
KUANG Wenhui, GUO Changqing, DOU Yinyin
The data set mainly includes the ice observation frequency (ICO) of north temperate lakes in four periods from 1985 to 2020, as well as the location, area and elevation of the lakes. Among them, the four time periods are 1985-1998 (P1), 1999-2006 (P2), 2007-2014 (P3) and 2015-2020 (P4) respectively, in order to improve the "valid observation" times in the calculation period and improve the accuracy. The ICO of the four periods is calculated by the ratio of "icing" times and "valid observation" times counted by all Landsat images in each period. Other lake information corresponds to the HydroLAKEs data set through the "hylak_id" column in the table. In addition, the data only retains about 30000 lakes with an area of more than 1 square kilometer, which are valid for P1-P4 observation. The data set can reflect the response of Lake icing to climate change in recent decades.
WANG Xinchi
The basic principle of ancient recipe analysis based on carbon and nitrogen stable isotope analysis method is you are what you eat, that is, the chemical composition of animal tissues and organs is closely related to their diet. Through the detection of isotope ratio of relevant elements, the food structure of ancient people and animals can be directly revealed Then it discusses the research means of people's livelihood and livestock domestication. The collagen of human and animal bones from shilinggang site in Nujiang, Yunnan Province in the southwest of Qinghai Tibet Plateau was analyzed by carbon and nitrogen stable isotopes.
DONG Guanghui , REN Lele
Surface downward radiation (SDR), including shortwave downward radiation (SWDR) and longwave downward radiation (LWDR), is of great importance to energy and climate studies. Considering the lack of reliable SDR data with a high spatiotemporal resolution in the East Asia-Pacific (EAP) region, we derived SWDR and LWDR at 10-min and 0.05° resolutions for this region from 2016-2020 based on the next-generation geostationary satellite Himawari-8 (H-8). The SDR product is unique in terms of its all-sky features, high accuracy and high resolution levels. The cloud effect is fully considered in the SDR product, and the influence of high aerosol loadings and topography on the SWDR are considered. Compared to benchmark products of the radiation, such as Clouds and the Earth’s Radiant Energy System (CERES) and the European Centre for Medium-Range Weather Forecasts (ECMWF) next-generation reanalysis (ERA5), and the Global Land Surface Satellite (GLASS), not only is the resolution of the new SDR product notably much higher but the product accuracy is also higher than that of those products. In particular, hourly and daily root mean square errors of hourly and daily of the new SWDR are 104.9 and 31.5 Wm-2, respectively, which are much smaller than those of CERES (at 121.6 and 38.6 Wm-2, respectively), ERA5 (at 176.6 and 39.5 Wm-2, respectively) and GLASS (daily of 36.5 Wm-2). Meanwhile, RMSEs of hourly and daily values of the new LWDR are 19.6 and 14.4 Wm-2, respectively, which are comparable to that of CERES and ERA5, and even better over high altitude regions.
HUSI Letu, WANG Tianxing, DU Yihan
The dataset is from the transient experiment TRN40ka in Zhang et al (2021, Nature Geoscience), spanning 40ka-32ka BP with changing orbital parameters. For detailed description of experimental design, please refer to the original paper. Model details: COSMOS (ECHAM5-JSBACH-MPI-OM), a comprehensive fully coupled atmosphere–ocean general circulation model (AOGCM), is used to generate the dataset. The atmospheric model ECHAM5, complemented by the land surface component JSBACH, is used at T31 resolution (∼3.75°), with 19 vertical layers. The ocean model MPI-OM, including sea-ice dynamics that is formulated using viscous-plastic rheology, has a resolution of GR30 (3°×1.8°) in the horizontal, with 40 uneven vertical layers.
ZHANG Xu
This dataset contains the monthly/yearly surface shortwave band albedo, fraction of absorbed photosynthetically active radiation (fPAR), leaf area index (LAI), vegetation continuous fields (tree cover and non-tree vegetation cover, VCF), land surface temperature (LST), net radiation (RN), evapotranspiration (ET), aboveground autotrophic respiration (RA-ag), belowground autotrophic respiration (RA-bg), gross primary production (GPP) and net primary production (NPP) in China from 2001 to 2018. The spatial resolution are 0.1 degree. Moreover, the dataset also includes these 11 ecosystem variables under climate-driven scenario (i.e., under no human disturbance). So, it can show the relative influences of climate change and human activities on land ecosystem in China during the 21st century.
CHEN Yongzhe, FENG Xiaoming, TIAN Hanqin, WU Xutong, GAO Zhen, FENG Yu, PIAO Shilong, LV Nan, PAN Naiqing, FU Bojie
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
Based on the analysis of brgdgts and hydrogen isotopes of leaf wax in lake sediments from Tengchong Qinghai (tcqh) in Yunnan Province, this study shows for the first time the high-resolution annual average temperature change history of low latitude land since the last glacial period (since the last 88000 years). According to the annual average temperature of South Asia established by tcqh core, there are two warm periods of 88000-71000 years and 45000-22000 years in this region, and the temperature range is about 2-3 ° C. Since the Holocene, the temperature has been increasing for about 1-2 years ° C。
ZHAO Cheng
A comprehensive understanding of the permafrost changes in the Qinghai Tibet Plateau, including the changes of annual mean ground temperature (Magt) and active layer thickness (ALT), is of great significance to the implementation of the permafrost change project caused by climate change. Based on the CMFD reanalysis data from 2000 to 2015, meteorological observation data of China Meteorological Administration, 1 km digital elevation model, geo spatial environment prediction factors, glacier and ice lake data, drilling data and so on, this paper uses statistics and machine learning (ML) method to simulate the current changes of permafrost flux and magnetic flux in Qinghai Tibet Plateau The range data of mean ground temperature (Magt) and active layer thickness (ALT) from 2000 to 2015 and 2061 to 2080 under rcp2.6, rcp4.5 and rcp8.5 concentration scenarios were obtained, with the resolution of 0.1 * 0.1 degree. The simulation results show that the combination of statistics and ML method needs less parameters and input variables to simulate the thermal state of frozen soil, which can effectively understand the response of frozen soil on the Qinghai Tibet Plateau to climate change.
Ni Jie, Wu Tonghua
Relationship between modern pollen and climate, and its representative to vegetation are the important references in explaining and reconstructing past climate and vegetation qualitatively or quantitatively. To extrct past climate and vegetation signals from fossil pollen spectrum of a lacustrine sediment, a corresponding modern pollen dataset collected from lake-sediment surface is necessary. At present, there are a few modern pollen datasets extracted from lake sediment-surface established on the Tibetan Plateau, however, the geographic gaps (e.g. the central and east Tibetan Plateau) of available sampled lakes influence the correct understanding. To ensure the even distribution of the representative lakes, we collected lake sediment-surface samples (n=117) covering the alpine meadow evenly on the east and central Tibetan Plateau, in July and August 2018. For pollen extraction, approximately 10 g (wet original sediment) per sample were sub-sampled. Pollen sample was processed by the standard acid-alkali-acid procedures followed by 7-μm-mesh sieving. More than 500 terrestrial pollen grains were counted for each sample. Pollen assemblages of the dataset from alpine meadow are dominated by Cyperaceae (mean is 68.4%, maximum is 95.9%), with other herbaceous pollen taxa as commen taxa including Poaceae (mean is 10.3%, maximum is 87.7%), Ranunculaceae (mean is 4.8%, maximum is 33.6%), Artemisia (mean is 3.7%, maximum is 24.5%), Asteraceae (mean is 2.1%, maximum is 33.6%), etc. Salix (mean is 0.4%, maximum is 5.3%) is the major shrub taxon in these pollen assemblages, while arboreal taxa occur with low percentages generally (mean of total arboreal percentages is 0.9% (maximum is 5.8%), including mainly Pinus (mean is 0.3%, maximum is 1.8%), Betula (mean is 0.1%, maximum is 0.9%) and Alnus (mean is 0.1%, maximum is 0.7%). These pollen assemblages represent the plant components well in the alpine meadow communities, although they are influenced slightly by long-distance pollen grain transported by wind or river (such as these arboreal pollen taxa). Together with pollen counts and percentages, we also provided the modern climatic data for the sampled lakes. The China Meteorological Forcing Dataset (CMFD; gridded near-surface meteorological dataset) with a temporal resolution of three hours and a spatial resolution of 0.1° was employed, and the climatic data of the nearest pixel of one sampled lake was defined to represent climatic conditions of the lake. Finally, the mean annual precipitation (Pann), mean annual temperature (Tann) and mean temperature of the coldest month (Mtco) and warmest month (Mtwa) are calculated for each sampled lake.
CAO Xianyong, TIAN Fang, LI Kai, NI Jian
These datasets include mean annual ground temperature (MAGT) at the depth of zero annual amplitude (approximately 3 m to 25 m), active layer thickness (ALT), the probability of the permafrost occurrence, and the new permafrost zonation based on hydrothermal condition for the period of 2000-2016 in the Northern Hemisphere with an 1-km resolution by integrate unprecedentedly large amounts of field data (1,002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modelling with an ensemble strategy, and thus more accurate than previous circumpolar maps.
RAN Youhua, LI Xin, CHENG Guodong, CHE Jinxing, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, JIN Huijun, Jaroslav Obu, Masahiro Hori, YU Qihao, CHANG Xiaoli
We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.
ZHANG Guoqing
The data includes the daily mean value of stable isotope δ18O in precipitation, the air temperature and precipitation amounts in Bomi in 2008; the precipitation samples are collected by Bomi meteorological station, and the stable isotope of precipitation is measured at the Laboratoire des Sciences du Climat et de l’Environnement, France., The δ18O amounts were measured by equilibration on a MAT-252 mass spectrometer, with an analytical precision of 0.05‰. The air temperatures and precipitation amounts were recorded for each precipitation events at Bomi meteorological stations, through the average of the observed temperature before and after the precipitation event, and through the total precipitation amount for each event. The data study has been published in the Journal of Climate, entitled Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling.
GAO Jing
Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM2M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours (or 6 hours), daily and yearly scales.
PAN Xiaoduo, ZHANG Lei
The data set is the daily precipitation stable isotope data (δ 18O, δ D, d-excess) from Satkhira, Barisal and sylhet3 stations in Bangladesh from 2017 to 2018. The data set was collected by Bangladesh Atomic Energy Commission (BAEC) and measured by picarro l2130i wavelength scanning cavity ring down spectrometer in the Key Laboratory of environment and surface processes, Institute of Qinghai Tibet Plateau, Chinese Academy of Sciences. Sampling location and time of three observation points: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04
GAO Jing
Precipitation stable isotopes (2H and 18O) are adequately understood on their climate controls in the Tibetan Plateau, especially the north of Himalayas via about 30 years’ studies. However, knowledge of controls on precipitation stable isotopes in Nepal (the south of Himalayas), is still far from sufficient. This study described the intra-seasonal and annual variations of precipitation stable isotopes at Kathmandu, Nepal from 10 May 2016 to 21 September 2018 and analysed the possible controls on precipitation stable isotopes. All samples are located in Kathmandu, the capital of Nepal (27 degrees north latitude, 85 degrees east longitude), with an average altitude of about 1400 m. Combined with the meteorological data from January 1, 2001 to September 21, 2018, the values of precipitation (P), temperature (T) and relative humidity (RH) are given.
GAO Jing
The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)
GAO Jing
The stable oxygen isotope ratio (δ 18O) in precipitation is a comprehensive tracer of global atmospheric processes. Since the 1990s, efforts have been made to study the isotopic composition of precipitation at more than 20 stations located on the TP of the Tibetan Plateau, which are located at the air mass intersection between westerlies and monsoons. In this paper, we establish a database of monthly precipitation δ 18O over the Tibetan Plateau and use different models to evaluate the climate control of precipitation δ 18O over TP. The spatiotemporal pattern of precipitation δ 18O and its relationship with temperature and precipitation reveal three different domains, which are respectively related to westerly wind (North TP), Indian monsoon (South TP) and their transition.
GAO Jing
This dataset is derived from the paper: Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 This data contains supplementary material of this article. Researchers discovered well-preserved palm fossil leaves from the Lunpola Basin (32.033°N, 89.767°E), central Tibetan Plateau at a present elevation of 4655 m in 2016. Researchers compared the newly discovered fossil with those present fossil that are most similar, find that there is no similar leaves among present fossil, therefore, researchers proposed the new species <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. Using the climate model, combined with the research of the fossil, researchers rebuilt the paleoelevation of the central Tibetan Plateau, it shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. The data contains the following tables: 1) Table S1. Fossil records of palms around the world. 2) Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera. 3) Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. This dataset also contains the figures in the supplementary material in the article.
SU Tao
"One belt, one road" delineation of the key Asian regional watershed boundaries is based on the following principles: Principle 1: along the Silk Road Principle 2: located in arid and semi-arid areas Principle 3: high water risk Principle 4: watershed integrity 1. Division basis of arid area Food and Agriculture Organization of the United Nations. FAO GEONETWORK. Global map of aridity - 10 arc minutes (GeoLayer). (Latest update: 04 Jun 2015) Accessed (6 Mar 2018). URI: http://data.fao.org/ref/221072ae-2090-48a1-be6f-5a88f061431a.html?version=1.0 2. Water resources risk data: Gassert, F., M. Landis, M. Luck, P. Reig, and T. Shiao. 2014. Aqueduct Global Maps 2.1. Working Paper. Washington, DC: World Resources Institute. 3. Poverty index data: Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data. Computers & Geosciences, 2009, 35(8): 1652-1660. https://www.ngdc.noaa.gov/eog/dmsp/download_ poverty.html 4. Basic basin boundary data: (1) Watershed boundaries were derived from HydroSHEDS drainage basins data (Lehner and Grill 2013) based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator), which can be free download via https://hydrosheds.cr.usgs.gov/hydro.php (2) AQUASTAT Hydrological basins: This dataset is developed as part of a GIS-based information system on water resources. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations. The map is also available in the SOLAW Report 15: “Sustainable options for addressing land and water problems – A problem tree and case studies”. Data can be free download via http://www.fao.org/nr/water/aquamaps/ (3) HydroBASINS: https://www.hydrosheds.org/downloads 5. The GloRiC provides a database of river types and sub-classifications for all river reaches globally. https://www.hydrosheds.org/page/gloric 6. HydroATLAS offers a global compendium of hydro-environmental sub-basin and river reach characteristics at 15 arc-second resolution. https://www.hydrosheds.org/page/hydroatlas It covers an area of 1469400 square kilometers, including the following areas: Nujiang River Basin, Dead Sea basin, Sistan River Basin, Yellow River Basin, Jordan Syria eastern basin, Indus River Basin, Iran inland flow area, urmiya Lake Basin, Shiyang River Basin, hallelud mulgarb River Basin, Lianghe River Basin, Shule River Basin, Heihe River Basin, issekkor Lake Basin, Tata River Basin Limu River Basin, Turpan Hami basin, Ebinur Lake Basin, Junggar basin, Amu Darya River Basin, Manas River Basin, ulungu River Basin, Emin River Basin, Chu River Talas River Basin, Xil River Basin, Ili River Basin, Caspian Sea basin, Lancang River Basin, Yangtze River Basin, Qinghai lake water system, Eastern Qaidam Basin, western Qaidam Basin and Qiangtang plateau District, Yarlung Zangbo River Basin
RAN Youhua, WANG Lei, ZENG Tian, GE Chunmei, LI Hu
This dataset is derived from the paper: Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. This data contains R code and a new estimate of Tibetan soil carbon pool to 3 m depth, at a 0.1° spatial resolution. Previous assessments of the Tibetan soil carbon pools have relied on a collection of predictors based only on modern climate and remote sensing-based vegetation features. Here, researchers have merged modern climate and remote sensing-based methods common in previous estimates, with paleoclimate, landform and soil geochemical properties in multiple machine learning algorithms, to make a new estimate of the permafrost soil carbon pool to 3 m depth over the Tibetan Plateau, and find that the stock (38.9-34.2 Pg C) is triple that predicted by ecosystem models (11.5 ± 4.2 Pg C), which use pre-industrial climate to initialize the soil carbon pool. This study provides evidence that illustrates, for the first time, the bias caused by the lack of paleoclimate information in ecosystem models. The data contains the following fields: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
DING Jinzhi, WANG Tao
This dataset is collected from the paper: Chen, J.*#, Huang, Y.*#, Brachi, B.*#, Yun, Q.*#, Zhang, W., Lu, W., Li, H., Li, W., Sun, X., Wang, G., He, J., Zhou, Z., Chen, K., Ji, Y., Shi, M., Sun, W., Yang, Y.*, Zhang, R.#, Abbott, R. J.*, & Sun, H.* (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. doi:10.1038/s41467-019-13128-y. This data contains the genome assembly of alpine species Salix brachista on the Tibetan Plateau, it contains DNA, RNA, Protein files in Fasta format and the annotation file in gff format. Assembly Level: Draft genome in chromosome level Genome Representation: Full Genome Reference Genome: yes Assembly method: SMARTdenovo 1.0; CANU 1.3 Sequencing & coverage: PacBio 125.0; Illumina Hiseq X Ten 43.0; Oxford Nanopore Technologies 74.0 Statistics of Genome Assembly: Genome size (bp): 339,587,529 GC content: 34.15% Chromosomes sequence No.: 19 Organellas sequence No.: 2 Genome sequence No.: 30 Maximum genome sequence length (bp): 39,688,537 Minimum genome sequence length (bp): 57,080 Average genome sequence length (bp): 11,319,584 Genome sequence N50 (bp): 17,922,059 Genome sequence N90 (bp): 13,388,179 Annotation of Whole Genome Assembly: Protein:30,209 tRNA:784 rRNA:118 ncRNA:671 Please see attachments for more details of annotation. The tables in the Supplementary Information of this article can also be found in this dataset. The table list is represented in attachments. The accession no. of genome assembly is GWHAAZH00000000 (https://bigd.big.ac.cn/gwh/Assembly/663/show).
CHEN Jiahui, YANG Yongping, Richard John Abbott, SUN Hang
This dataset is the monthly precipitation data of China, with a spatial resolution of 0.0083333 ° (about 1km) and a time range of 1901.1-2021.12. The data format is NETCDF, i.e.. Nc format. This dataset is generated in China through the Delta spatial downscaling scheme based on the global 0.5 ° climate dataset released by CRU and the global high-resolution climate dataset released by WorldClim. In addition, 496 independent meteorological observation point data are used for verification, and the verification results are reliable. This data set covers the main land areas in China (including Hong Kong, Macao and Taiwan), excluding islands and reefs in the South China Sea. In order to facilitate storage, the data are all int16 type and stored in nc files, with precipitation units of 0.1mm. NC data can be mapped using ArcMAP software; Matlab software can also be used for extraction processing. Matlab has released the function to read and store nc files. The read function is ncread, and switch to the nc file storage folder. The statement is expressed as: ncread ('XXX.nc ',' var ', [i j t], [leni lenj lent]), where XXX.nc is the file name, and is the string required' '; Var is from XXX The variable name read in NC. If it is a string, '' is required; i. J and t are the starting row, column and time of the read data respectively, and leni, lenj and lent i are the length of the read data in the row, column and time dimensions respectively. In this way, this function can be used to read in any region and any time period in the study area. There are many commands about NC data in the help of Matlab, which can be viewed. WGS84 is recommended for data coordinate system.
PENG Shouzhang
This data set is from the paper: Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F.L., Li, S., Lai, q.z., Wang, H.Q., Spicer, t.e.v., Yue, Y.H., Shukla, A., Srivastava, g., Khan, M.A., BERA, S., and Mehrotra, R. 2017. Quantifying the rise of the Himalaya origin and implications for the South Asian monsoon. Geography, 45:215-218. This achievement is part of a series of research results of paleoaltitude carried out by Ding Lin' team. We reconstruct the rise of a segment of the southern flank of the Himalaya-Tibet orogen, to the south of the Lhasa terrane, using a paleoaltimeter based on paleoenthalpy encoded in fossil leaves from two new assemblages in southern Tibet (Liuqu and Qiabulin) and four previously known floras from the Himalaya foreland basin. U-Pb dating of zircons constrains the Liuqu flora to the latest Paleocene (ca. 56 Ma) and the Qiabulin flora to the earliest Miocene (21–19 Ma). The proto-Himalaya grew slowly against a high (~4 km) proto–Tibetan Plateau from ~1 km in the late Paleocene to ~2.3 km at the beginning of the Miocene, and achieved at least ~5.5 km by ca. 15 Ma. Contrasting precipitation patterns between the Himalaya-Tibet edifice and the Himalaya foreland basin for the past ~56 m.y. show progressive drying across southern Tibet, seemingly linked to the uplift of the Himalaya orogen.
DING Lin
This data is derived from the Supplementary Tables of the paper: Chen, F. H., Welker, F., Shen, C. C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S. E., Yu, T. L., Skinner, M. M., Stelzer, S., Dong, G. R., Fu, Q. M., Dong, G. H., Wang, J., Zhang, D. J., & Hublin, J. J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409-412. This research is another breakthrough made by academician Fahu Chen and his team over the years research of human activities and environmental adaptation on the Tibetan Plateau. The research team analyzed the newly discovered hominid mandible fossils in Xiahe County, Gansu Province, China, and identified it belongs to Denisovan of the Tibetan Plateau, which suggested to call Xiahe Denisovan. The team conducted a multidisciplinary analysis of the fossil, including chronology, physique morphology, molecular archaeology, living environment and human adaptation. It is the first Denisovan fossil found outside the Denisova Cave in the Altai Mountains and the earliest evidence of human activity on the Tibetan Plateau (160 kyr BP). This study provides key evidence for further study of Denisovans' physical characteristics and distribution in East Asia, it also provides evidence of a deep evolutionary history of these archaic hominins within the challenging environment of the Tibetan Plateau. This data contains 6 tables, table name and contents are as follows: t1: Distances in mm between meshes generated from CT versus photoscans (PS). t2: Measurements of the Xiahe mandible after reconstruction. t3: Comparative Dental metrics. t4: Comparative crown morphology. t5: Uniprot accession numbers for protein sequences of extant primates used in the phylogenetic analyses. t6: Specimen names and numbers.
CHEN Fahu
This data is the lowest monthly temperature data of China, with a spatial resolution of 0.0083333 ° (about 1km) and a time of 1901.1-2021.12. The data format is NETCDF, i.e.. Nc format. The unit of data is 0.1 ℃. This dataset is generated in China through the Delta spatial downscaling scheme based on the global 0.5 ° climate dataset released by CRU and the global high-resolution climate dataset released by WorldClim. In addition, 496 independent meteorological observation point data are used for verification, and the verification results are reliable. This data set covers the main land areas in China (including Hong Kong, Macao and Taiwan), excluding islands and reefs in the South China Sea. WGS84 is recommended for data coordinate system.
PENG Shouzhang
This dataset includes the monthly maximum temperature data with 0.0083333 arc degree (~1km) for China from Jan 1901 to Dec 2021. The data form belongs to NETCDF, namely .nc file. The unit of the data is 0.1 ℃. The dataset was spatially downscaled from CRU TS v4.02 with WorldClim datasets based on Delta downscaling method. The dataset was evaluated by 496 national weather stations across China, and the evaluation indicated that the downscaled dataset is reliable for the investigations related to climate change across China. The dataset covers the main land area of China, including Hong Kong, Macao and Taiwan regions, and excluding islands and reefs in South China Sea. WGS84 is recommended for data coordinate system.
PENG Shouzhang
The field observation platform of the Tibetan Plateau is the forefront of scientific observation and research on the Tibetan Plateau. The land surface processes and environmental changes based comprehensive observation of the land-boundary layer in the Tibetan Plateau provides valuable data for the study of the mechanism of the land-atmosphere interaction on the Tibetan Plateau and its effects. This dataset integrates the 2005-2016 hourly atmospheric, soil hydrothermal and turbulent fluxes observations of Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (QOMS/CAS), Southeast Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS), the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (NPCE-BJ), Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS), Ngari Desert Observation and Research Station, CAS (NADORS), Muztagh Ata Westerly Observation and Research Station, CAS (MAWORS). It contains gradient observation data composed of multi-layer wind speed and direction, temperature, humidity, air pressure and precipitation data, four-component radiation data, multi-layer soil temperature and humidity and soil heat flux data, and turbulence data composed of sensible heat flux, latent heat flux and carbon dioxide flux. These data can be widely used in the analysis of the characteristics of meteorological elements on the Tibetan Plaetau, the evaluation of remote sensing products and development of the remote sensing retrieval algorithms, and the evaluation and development of numerical models.
MA Yaoming
Mean annual ground temperature (MAGT) at a depth of zero annual amplitude and permafrost thermal stability type are fundamental importance for engineering planning and design, ecosystem management in permafrost region. This dataset is produced by integrating remotely sensed freezing degree-days and thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, and in situ MAGT measurements from 237 boreholes for the 2010s (2005-2015) on the Tibetan Plateau (TP) by using an ensemble learning method that employs a support vector regression (SVR) model based on distance-blocked resampling training data with 200 repetitions. Validation of the new permafrost map indicates that it is probably the most accurate of all available maps at present. The RMSE of MAGT is approximately 0.75 °C and the bias is approximately 0.01 °C. This map shows that the total area of permafrost on the TP is approximately 115.02 (105.47-129.59) *104 km2. The areas corresponding to the very stable, stable, semi-stable, transitional, and unstable types are 0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2, and 23.80*104 km2, respectively. This new dataset is available for evaluate the permafrost change in the future on the TP as a baseline. More details can be found in Ran et al., (2020) that published at Science China Earth Sciences.
RAN Youhua, LI Xin
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
This data set comprises the plateau soil moisture and soil temperature observational data based on the Tibetan Plateau, and it is used to quantify the uncertainty of model products of coarse-resolution satellites, soil moisture and soil temperature. The observation data of soil temperature and moisture on the Tibetan Plateau (Tibet-Obs) are from in situ reference networks at four regional scales, which are the Nagqu network of cold and semiarid climate, the Maqu network of cold and humid climate, and the Ali network of cold and arid climate,and Pali network. These networks provided representative coverage of different climates and surface hydrometeorological conditions on the Tibetan Plateau. - Temporal resolution: 1hour - Spatial resolution: point measurement - Measurement accuracy: soil moisture, 0.00001; soil temperature, 0.1 °C; data set size: soil moisture and temperature measurements at nominal depths of 5, 10, 20, 40 - Unit: soil moisture, cm ^ 3 cm ^ -3; soil temperature, °C
BOB Su, YANG Kun
Based on the long-term observation data of each field station in the alpine network and overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; the inversion of data products such as meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacial and frozen soil changes are completed through enhanced observation and sample site verification in key regions; based on the IOT Network technology, the development and establishment of multi station network meteorological, hydrological, ecological data management platform, to achieve real-time access to network data and remote control and sharing. In 2018, the hydrological data set of surface process and environmental observation network in China's alpine region mainly collects the daily measured hydrological (runoff, water level, water temperature, etc.) data of Qilianshan station, Southeast Tibet station, Zhufeng station, Yulong Xueshan station, Namucuo station, Ali station, mostag and other seven stations.
ZHU Liping,
This dataset is collected from the Supplementary Materials part of the paper "Chen, F.H., Dong, G.H., Zhang, D.J., Liu, X.Y., Jia, X., An, C.B., Ma, M.M., Xie, Y.W., Barton, L., Ren, X.Y., Zhao, Z.J., & Wu, X.H. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347, 248–250.". In this paper, researchers analyzed animal bones, plant remains and other artefacts from 53 sites across the northeastern Tibetan plateau and found that humans began to relocate to the elevations above 4000 masl after the emergence of Barley. According to the study, the prehistoric human expansion into the higher, colder altitudes of the Tibetan plateau took place as the continental temperatures had themselves become colder after 3,600 calendar years before the present, thus, the key impetus of the expansion was agricultural innovation rather than climate change. This dataset contains 4 tables, table names and content are as follows: Data list: The data name list of the rest tables; t1: Calibrated radiocarbon dates and domesticated plant and animal remains from sites investigated on the NETP; t2: Radiocarbon dates of the Paleolithic sites on the Tibetan Plateau; t3: OSL dates of the Paleolithic sites on the Tibetan Plateau. See attachments for data details: Supplementary Materials.pdf, Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3,600 BP.pdf.
CHEN Fahu
Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.
HE Chansheng
The dataset includes soil physical and chemical attributes: pH value, organic matter fraction, cation exchange capacity, root abundance, total nitrogen (N), total phosphorus (P), total potassium (K), alkali-hydrolysable N, available P, available K, exchangeable H+, Al3+, Ca2+, Mg2+, K+ , Na+, horizon thickness, soil profile depth, sand, silt and clay fractions, rock fragment, bulk density, porosity, structure, consistency and soil color. Quality control information (QC) was provided. The resolution is 30 arc-seconds (about 1 km at the equator). The vertical variation of soil property was captured by eight layers to the depth of 2.3 m (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) for convenience of use in the Common Land Model and the Community Land Model (CLM). 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
DAI Yongjiu, SHANGGUAN Wei
This data set is collected from the supplementary information part of the paper: Yao, T. , Thompson, L. , & Yang, W. . (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5. This paper report on the glacier status over the past 30 years by investigating the glacial retreat of 82 glaciers, area reductionof 7,090 glaciers and mass-balance change of 15 glaciers. This data set contains 8 tables, the names and content are as follows: Data list: The data name list of the rest tables; t1: Distribution of Glaciers in the TP and surroundings; t2: Data and method for analyzing glacial area reduction in each basin; t3: Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings; t4: Glacial length fluctuationin the TP and surroundings in the past three decades; t5: Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings; t6: Recent annual mass balances in different regions in the TP; t7: Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP. See attachments for data details: Supplementary information.pdf, Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf.
YAO Tandong
DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system
TANG Guoan
The source of the data is paper: Zhang, J.F., Xu, B.Q., Turner, F., Zhou, L.P., Gao, P., Lü, X.M., & Nesje, A. (2017). Long-term glacier melt fluctuations over the past 2500 yr in monsoonal high asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology, 45(4), 359-362. In this paper, the researcher of Institute of Tibetan Plateau Research, Chinese Academy of Sciences and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Baiqing Xu, with his postdoctoral fellow, Jifeng Zhang, and collaborators from Peking University and other institutions, propose that the OPE (“old pollen effect”, the offset between the calibrated 14C ages of pollen in lake sediments and the sediment depositional age) as a new indicator of glacier melt intensity and fluctuations by measuring the radiocarbon ages of the sediments of the proglacial lake of Qiangyong Glacier on the southern Tibetan Plateau with multi-methods (bulk organic matter, pollen concentrates and plant residues). This research suggests that hemispheric-scale temperature variations and mid-latitude Westerlies may be the main controllers of the late Holocene glacier variability in monsoonal High Asia. It also shows that the 20th-century glacier melt intensity exceeded that of two historical warm epochs (the Medieval Warm Period, and the Iron/Roman Age Optimum) and is unprecedented at least for the past 2.5 k.y. This data is provided by the author of the paper, it contains long-term glacier melt fluctuations of Qiangyong Glacier over the past 2500 yr reconstructed by the OPE. A 3.06-m-long core (QYL09-4) and a 1.06-m-long parallel gravity core (QY-3) were retrieved by the researchers from the depositional center of Qiangyong Co. Using a new composite extraction procedure, they obtained relatively pure pollen concentrates and plant residue concentrates (PRC; >125 μm) from the finely laminated sediments. Bulk organic matter and the PRC and pollen fractions were used for 14C dating independently. All 14C ages were calibrated with IntCal13 (Reimer et al., 2013). The age-depth model is based on 210Pb and 137Cs ages and five 14C ages of PRC. Only the youngest PRC ages were used for the age-depth model, whereas older ages that produce a stratigraphic reversal and are apparently influenced by redeposited or aquatic plant material were rejected. The deposition model was constructed using the P_Sequence algorithm in Oxcal 4.2 (Bronk Ramsey, 2008). For the calculation of the offset between the calibrated pollen 14C ages and the sediment depositional age, 2σ intervals for interpolated ages according to the deposition model were subtracted from calibrated pollen ages (2σ span), resulting in the age offset between pollen and estimated sediment ages (ΔAgepollen). This data is radiocarbon ages and the calculated ΔAgepollen of core QYL09-4 from a proglacial lake of Qiangyong Glacier. The data contains fields as follows: Lab No. Dating Material Depth (cm) 14C age (yr BP) ∆Agepollen (≥95.4 % yrs) Sediment Age (CE) See attachments for data details: ZhangJF et al. 2017 GEOLOGY_Long-term glacier melt fluctuations over the past 2500 yr on the Tibetan Plateau.pdf.
ZHANG Jifeng
This dataset is provided by the author of the paper: Huang, R., Zhu, H.F., Liang, E.Y., Liu, B., Shi, J.F., Zhang, R.B., Yuan, Y.J., & Grießinger, J. (2019). A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Climate Dynamics, 53(5-6), 3221-3233. In this paper, in order to understand the past few hundred years of winter temperature change history and its driving factors, the researcher of Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences and CAS Center for Excellence in Tibetan Plateau Earth Sciences. Prof. Eryuan Liang and his research team, reconstructed the minimum winter (November – February) temperature since 1340 A.D. on southeastern Tibetan Plateau based on the tree-ring samples taken from 2007-2016. The dataset contains minimum winter temperature reconstruction data of Changdu on the southeastern TP during 1340-2007. The data contains fileds as follows: year Tmin.recon (℃) See attachments for data details: A tree ring-based winter temperature reconstruction for the southeasternTibetan Plateau since 1340 CE.pdf
HUANG Ru, ZHU Haifeng, LIANG Eryuan
This data set is collected from the supplementary information part of the paper: Pei, S.P., Niu, F.L., Ben-Zion, Y., Sun, Q., Liu, Y.B., Xue, X.T., Su,J.R., & Shao, Z.G. (2019). Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience. 12. 387-392. doi:10.1038/s41561-019-0347-1. This paper studies the structural evolution process of The Longmenshan fault zone located at a pronounced topographic boundary between the eastern margin of the Tibetan plateau and the western Sichuan basin. With the observations on coseismic velocity reductions and the healing phases, it is found that the healing phase of Wenchuan earthquake fracture zone accelerated significantly in response to the Lushan earthquake. This data set contains 3 tables, table names and content are as follows: Data list: The data name list of the rest tables; t1: Data of the four periods (befor Wenchuan earthquake, after Wenchuan earthquake, before Lushan earthquake, after Lushan earthquake); t2: The average velocities with error in Figure 2 in the paper for Wenchuan earthquake (WCEQ) and Lushan earthquake (LSEQ) area. See attachments for data details: Supplementary information.pdf, Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault.pdf.
PEI Shunping
This data is originated from the 1:100,000 national basic geographic database, which was open freely for public by the National Basic Geographic Information Center in November 2017. The boundary of the Qinghai-Tibet Plateau was spliced and clipped as a whole, so as to facilitate the study on the Qinghai-Tibet plateau. This data set is the 1:100,000 administrative boundaries of the qinghai-tibet plateau, including National_Tibet_line、 Province_Tibet、City_Tibet、County_Tibet_poly and County_Tibet_line. Administrative boundary layer (County_Tibet_poly) property name and definition: Item Properties Describe Example PAC Administrative division code 513230 NAME The name of the County line name Administrative boundary layer (BOUL) attribute name and definition: Item Properties Describe Example GB classification code 630200 Administrative boundary layer (County_Tibet_line) attribute item meaning: Item Properties Describe Example GB 630200 Provincial boundary GB 640200 Prefectural, municipal and state administrative boundaries GB 650201 county administrative boundaries (determined)
National Basic Geographic Information Center
Qinghai Tibet Plateau is the largest permafrost area in the world. At present, some permafrost distribution maps have been compiled. However, due to the limited data sources, unclear standards, insufficient verification and lack of high-quality spatial data sets, there is great uncertainty in drawing Permafrost Distribution Maps on TP. Based on the improved medium resolution imaging spectrometer (MODIS) surface temperature (LSTS) model of 1 km clear sky mod11a2 (Terra MODIS) and myd11a2 (Aqua MODIS) product (reprocessing version 5) in 2003-2012, the data set simulates the distribution of permafrost and generates the permafrost map of Qinghai Tibet Plateau. The map was verified by field observation, soil moisture content and bulk density. Permafrost attributes mainly include: seasonally frozen ground, permafrost and unfrozen ground. The data set provides more detailed data of Permafrost Distribution and basic data for the study of permafrost in the Qinghai Tibet Plateau.
ZHAO Lin
This dataset contains five types of boundaries. 1. TPBoundary_ 2500m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 2500m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 2. TPBoundary_ 3000m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 3000m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 3. TPBoundary_ HF (high_frequency): This boundary is defined according to 2 previous studies. Bingyuan Li (1987) had a systematic discussion on the principles for determining the extent of the Tibetan Plateau and the specific boundaries. From the perspective of the formation and basic characteristics of the Tibetan Plateau, he proposed the basic principles for determining the extent of the Tibetan Plateau based on the geomorphological features, the plateau surface and its altitude, while considering the integrity of the mountain. Yili Zhang (2002) determined the extent and boundaries of the Tibetan Plateau based on the new results of research in related fields and years of field practice. He combined information technology methods to precisely locate and quantitatively analyze the extent and boundary location of the Tibetan Plateau, and concluded that the Tibetan Plateau in China extends from the Pamir Plateau in the west to the Hengduan Mountains in the east, from the southern edge of the Himalayas in the south to the northern side of the Kunlun-Qilian Mountains in the north. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the Announcement on Adding Geographical Names for Public Use in the Southern Tibetan Region (First Batch), adding six geographical names in the southern Tibetan region, including Wo’gyainling, Mila Ri, Qoidêngarbo Ri, Mainquka, Bümo La, and Namkapub Ri. 4. TPBoundary_ New (2021): Along with the in-depth research on the Tibetan Plateau, the improvement of multidisciplinary research and understanding inside and outside the plateau, and the progress of geographic big data and Earth observation science and technology, the development of the 2021 version of the Tibetan Plateau boundary data by Yili Zhang and et al. was completed based on the comprehensive analysis of ASTER GDEM and Google Earth remote sensing images. The range boundary starts from the northern foot of the West Kunlun Mountain-Qilian Mountain Range in the north and reaches the southern foot of the Himalayas and other mountain ranges in the south, with a maximum width of 1,560 km from north to south; from the western edge of the Hindu Kush Mountains and the Pamir Plateau in the west to the eastern edge of the Hengduan Mountains and other mountain ranges in the east, with a maximum length of about 3,360 km from east to west; the latitude and longitude range is 25°59′30″N~40°1′0″N, 67°40′37″E~104°40′57″E, with a total area of 3,083,400km2 and an average altitude of about 4,320m. Administratively, the Tibetan Plateau is distributed in nine countries, including China, India, Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. 5. TPBoundary_ Rectangle: The rectangle was drawn according to the range of Lon (63~105E) and Lat (20~45N). The data are in latitude and longitude projection WGS84. As the basic data, the boundary of the Tibetan Plateau can be used as a reference basis for various geological data and scientific research on the Tibetan Plateau.
ZHANG Yili
A multi-layer soil particle-size distribution dataset (sand, silt and clay content), based on USDA (United States Department of Agriculture) standard for regional land and climate modelling in China. was developed The 1:1,000,000 scale soil map of China and 8595 soil profiles from the Second National Soil Survey served as the starting point for this work. We reclassified the inconsistent soil profiles into the proper soil type of the map as much as possible because the soil classification names of the map units and profiles were not quite the same. The sand, silt and clay maps were derived using the polygon linkage method, which linked soil profiles and map polygons considering the distance between them, the sample sizes of the profiles, and soil classification information. For comparison, a soil type linkage was also generated by linking the map units and soil profiles with the same soil type. The quality of the derived soil fractions was reliable. Overall, the map polygon linkage offered better results than the soil type linkage or the Harmonized World Soil Database. The dataset, with a 1-km resolution, can be applied to land and climate modelling at a regional scale. Data characteristics: projection:projection Coverage: China Resolution: 0.00833 (about 1 km) Data format: FLT, TIFF Value range: 0%-100% Document describing: Floating point raster files include: Sand1. FLT, clay1. FLT -- surface (0-30cm) sand, clay content. Sand2. FLT, clay2. FLT -- content of sand and clay in the bottom layer (30-100cm). PSD. HDR -- header file: Ncols - the number of columns Nrows- rows Xllcorner - latitude in the lower left corner Yllcorner - longitude of the lower left corner Cellsize - cellsize NODATA_value - a null value byteorder - LSBFIRST, Least Significant Bit First TIFF raster files include: Sand1. Tif, clay1. Tif - surface (0-30cm) sand, clay content. Sand2. Tif, clay2. Tif - bottom layer (30-100cm) sand, clay content.
SHANGGUAN Wei, DAI Yongjiu
The remote sensing monitoring database of land use status in China is a multi-temporal land use status database covering the land area of China, which has been established after many years of accumulation under the support of the National Science and Technology Support Plan and the Key Direction Project of the Knowledge Innovation Project of the Chinese Academy of Sciences. It is the most accurate remote sensing monitoring data product of land use in China at present, which has played an important role in the national land resources survey, hydrology and ecological research. This data set covers the six western provinces in China: Xinjiang, Tibet, Qinghai, Yunnan, Sichuan and Gansu. Based on Landsat TM/ETM remote sensing images in the late 1970s、1980s、1995、2000、2005、2010、2015, 1KM raster data are generated by using the professional software and manual visual interpretation on the basis of vector data. The land use types include six primary land types which are cultivated land, forest land, grassland, water area, residential land and unused land, and 25 secondary types.
LIU Jiyuan
The data set was produced based on the SRTM DEM data collected by Space Shuttle Radar terrain mission in 2016, the reference data such as river, lake and other water system auxiliary data , using the arcgis hydrological model to analyze and extract the river network. There are 12 sub-basins over the Tibet Plateau, including AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow. The outer boundary is based on the 2500-metre contour line and national boundaries.
ZHANG Guoqing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn